a) EPA > EPB
b) vA < vB
c) aA < aB
d) LA=LB
a) La energía potencial vale:
![]()
Tenemos que:
rA>rB
Por lo tanto, en módulo:
![]()
Pero como tiene signo negativo:
EPA>EPB
b) Entre los puntos A y B se debe conservar la energía total:
ETA=ETB ⇒ ECA+EPA=ECB+EPB
Hemos deducido del apartado anterior que:
EPA>EPB ⇒ ECA<ECB
Teniendo en cuenta la expresión de la energía cinética:
![]()
vA<vB
c) La única fuerza que existe es la de atracción gravitatoria, que vale:
![]()
Como se debe cumplir la segunda ley de Newton:
F=ma
Entonces:
![]()
Por tanto tendremos:
![]()
aA<aB
d) El momento angular o cinético respecto al Sol se conserva por ser un caso de fuerzas centrales. Entonces:
LA=LB
