Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Problemas

Una masa de 0,5 kg desliza sin rozamiento por una varilla vertical según se indica en la figura. La longitud natural del resorte es l0=200 mm y la distancia d=300 mm. Si se suelta la masa partiendo del reposo cuando b=0, determinar: a) la constante del resorte que haga que bmáx=400 mm; b) la aceleración de la masa cuando b=400 mm: c) la reacción que ejerce la varilla sobre la masa en ese momento. ¿Por qué lado de la varilla se realiza el apoyo?

Problema de Trabajo y Energía. Aparece en la convocatoria de FEB2018.

Una masa de 500 g de oxígeno (masa molecular M=32 g/mol), al que se considera gas perfecto, se encuentra en el interior de un cilindro cerrado por un émbolo móvil sin rozamientos, siendo inicialmente su presión de 1 atm y su temperatura de 50 ºC. Se comprime posteriormente el gas isobáricamente hasta que su volumen se reduce a la mitad, sufriendo a continuación una compresión adiabática durante la cual se realiza un trabajo sobre el gas de 10283 J, evolucionando seguidamente a volumen constante, y volviendo al estado inicial mediante una expansión isoterma. Se pide: a) presión, volumen y temperatura en cada uno de los puntos del ciclo; b) dibujar el ciclo; c) variación de energía interna, trabajo, calor y entropía en cada una de las transformaciones y en el ciclo completo; d) rendimiento termodinámico del ciclo; e) rendimiento de un ciclo de Carnot que operase entre las mismas temperaturas extremas.
Datos: constante de los gases perfectos R=0.082 atml/molK=8.32 J/molK=2 cal/molK; 1 cal=4.18 J; 1 atm=101324.72 N/m2.

Problema de Entropia y Segundo Principio de la Termodinámica. Aparece en la convocatoria de JUN2004.

Una masa de aire de 1 kg se encuentra inicialmente a una temperatura de 15 oC y una presión de 76 cm de Hg. Se le hace describir el siguiente ciclo: 1) compresión adiabática hasta una presión de 30 atm; 2) calentamiento a presión constante suministrando 300 kcal; 3) expansión adiabática hasta llegar al volumen inicial; 4) transformación isócora hasta llegar a las condiciones iniciales. a) Calcular P, V y T al final de cada una de las transformaciones; b) rendimiento del ciclo. Datos: cp=0.25 cal/goC; γ=1.4; 1 atm=101324.72 N/m2; 1 cal=4.18 J; masa de 1 l de aire en condiciones normales: 1.293 g.

Problema de Entropia y Segundo Principio de la Termodinámica.

Una masa de un gas ideal (ϒ=1.4) ocupa 2 l y está sometido a una presión de 1 atm. Su temperatura es de 27 oC (estado 1). Mediante una compresión adiabática se consigue reducir su volumen a la cuarta parte (estado 2). A continuación se produce un calentamiento a presión constante hasta alcanzar un volumen de 1.5 l (estado 3). Mediante una expansión adiabática se llega al volumen inicial (estado 4), para volver, por último, al estado inicial. Sabiendo que para pasar del estado 2 al estado 3 se emplearon 594.5 cal se pide: a) dibujar el ciclo; b) calcular P, T y V en todos los estados; c) calcular el aporte o pérdida de energía que necesita el sistema para pasar del estado 4 al estado inicial; d) rendimiento del ciclo.

Problema de Entropia y Segundo Principio de la Termodinámica. Aparece en la convocatoria de JUN2000.

Una masa m oscila en un plano horizontal con una amplitud A en el extremo de un resorte de constante K. Cuando el resorte está estirado una distancia A se engancha una segunda masa m’ a la primera. Justifique cómo será la nueva amplitud de oscilación.

Cuestion de Movimiento Oscilatorio.

Una masa m1 desliza sobre una superficie horizontal lisa sujeta a un muelle de constante elástica k, oscilando con una amplitud A. Cuando el muelle está en su máxima deformación y la masa está instantáneamente en reposo se coloca en la parte superior de m1 otra masa m2. a) ¿Cuál es el menor valor del coeficiente de rozamiento estático m entre ambas para que m2 no deslice sobre m1? b) ¿Cómo se modifican la energía total, la amplitud A, la frecuencia angular ω y el período T al situar m2 sobre m1?

Problema de Movimiento Oscilatorio.

Una masa m2=20 g está situada sobre otra m1=18 g, la cual está sujeta a un resorte con k=10 N/m. El coeficiente de rozamiento estático entre las masas es 0,6. Las masas están oscilando sobre una superficie sin fricción. a) ¿Cuál es la amplitud máxima que puede tener la oscilación sin que m2 deslice sobre m1? b) En estas condiciones, el sistema se introduce en un medio viscoso que da lugar a una fuerza de rozamiento proporcional a la velocidad, siendo la constante de proporcionalidad de 1 Ns/m. Justificar el tipo de amortiguamiento que se produce; c) escribir la ecuación correspondiente suponiendo que se empieza a contar el tiempo (t=0) para la amplitud inicial máxima y velocidad nula; d) ¿qué tiempo tiene que transcurrir para que la amplitud se reduzca un 99,9%?

Problema de Movimiento Oscilatorio. Aparece en la convocatoria de DIC2018.

Una masa m2=3.5 kg se mantiene inicialmente en reposo sobre una mesa horizontal sin rozamiento y está unida por dos cables a las masas m1=1.5 kg y m3=2.5 kg como se muestra en la figura. Si se suelta la masa m2, calcular su aceleración.

Cuestion de Dinámica de la Partícula.

Una masa unida a un muelle puede moverse con un movimiento armónico simple, con una oscilación amortiguada o con una forzada. Describir cómo realizar estos movimientos experimentalmente. ¿Cuál sería la frecuencia angular de oscilación en cada movimiento y de qué parámetros depende?

Cuestion de Movimiento Oscilatorio.

Una masa unida a un resorte elástico en su parte inferior cae desde una determinada altura. Al chocar contra el suelo se comprime el resorte, distendiéndose seguidamente y partiendo el objeto hacia arriba. Responder justificando la respuesta: a) ¿es constante la fuerza ejercida contra el suelo durante el tiempo de contacto? b) ¿y la velocidad de llegada al suelo? c) ¿depende la duración del contacto del valor de la masa? d) ¿y de la rigidez del resorte?

Cuestion de Trabajo y Energía.

Paginación de entradas

Anteriores 1 … 111 112 113 … 120 Siguientes
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo