Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Problemas

¿Se puede, con los mismos elementos ópticos, construir un microscopio y un telescopio? En caso afirmativo representar la marcha de los rayos en los dos casos.

Cuestion de Óptica geométrica.

2000 moles de un gas ideal evolucionan según un ciclo de Carnot entre 180 oC y 40 oC. La cantidad de calor absorbida de la fuente caliente es de 40·105 J y la presión máxima alcanzada en el ciclo es de 105 N/m2. Suponiendo que cp=7/2·R calcular: a) el volumen del gas al iniciarse y al finalizar la expansión isotérmica; b) el trabajo realizado por el gas durante la expansión; c) el trabajo realizado sobre el gas durante la compresión.
Tómese 1 atm=101324.72 N/m2; R=2 cal/molK.

Problema de Entropia y Segundo Principio de la Termodinámica.

600 g de perdigones de plomo se calientan a 100 oC y se colocan en un bote de aluminio de 200 g de masa que contiene 500 g de agua inicialmente a 17.3 oC. El calor específico del aluminio del bote es 0.900 kJ/kgK. La temperatura final del sistema es de 20.0 oC. ¿Cuál es el calor específico del plomo? Calor específico del agua: 4.18 kJ/kgK.

Problema de Calor y Primer Principio de la Termodinámica.

70 g de hidrógeno atómico se comprimen adiabáticamente desde un estado inicial A (PA=1 atm; VA=80 dm3) a un estado final B (VB=40 dm3). Calcular: a) temperatura final; b) trabajo realizado para comprimir el gas; c) variación de energía interna; d) calor añadido o cedido. Tómese 1 atm=101324.72 N/m2.

Problema de Teoría Cinética de los Gases.

A 500 km de altura se lanza un satélite en dirección paralela a la superficie terrestre con una velocidad de 36900 km/h. Determinar: a) la máxima altura que alcanza el satélite; b) el período.

Problema de Gravitación.

A la esfera A se le comunica una velocidad descendente v0 y oscila describiendo una circunferencia vertical de radio L=2 m y centro O. Hallar: a) la menor velocidad v0 para la que la esfera llegará al punto B al oscilar alrededor del punto O si AO es una cuerda; b) la menor velocidad v0 para la que la esfera llegará al punto B al oscilar alrededor del punto O si AO es una varilla delgada de masa despreciable; c) si AO es una cuerda y la velocidad v0 tiene un módulo de 5 m/s, hallar el ángulo θ para el que se rompe la cuerda sabiendo que ésta puede soportar una tensión máxima igual al doble del peso de la esfera; d) si la cuerda no se rompiese, decir si podría con esa velocidad inicial trazar el círculo completo, y en caso contrario, determinar a qué altura dejaría la trayectoria circular.

Problema de Trabajo y Energía. Aparece en la convocatoria de JUL2011.

A lo largo de una cuerda que tiene 20 m de largo, una masa de 0.06 kg y una tensión de 50 N se mueven ondas de frecuencia 200 Hz y amplitud 1 cm. a) ¿Cuál es la energía total de las ondas en la cuerda? b) Hallar la potencia transmitida que pasa por un punto determinado de la cuerda

Problema de Movimiento Ondulatorio.

A partir de la segunda ley de Newton aplicada a la rotación de un sólido explicar el principio de conservación del momento angular. Demostrar que esto sucede siempre cuando la única fuerza que actúa sobre el cuerpo es el peso y describirlo en el giro sobre sí mismo de un patinador en una pista de hielo.

Cuestion de Dinámica del Sólido Rígido.

A partir de las gráficas s-t de las figuras determinar las gráficas de las velocidades y aceleraciones correspondientes (la curva b es de tipo parabólico).

Cuestion de Cinemática de la Partícula.

El bloque B (mB=10 kg) descansa sobre la plataforma extensa A (mA=20 kg) que a su vez se apoya en el suelo. El coeficiente de rozamiento entre la plataforma y el suelo es 0.1 y entre el bloque y la plataforma 0.5 (no se hace distinción entre los coeficientes de rozamiento estático y cinético). Si se aplica a la plataforma una fuerza horizontal, PA , determinar ¿cómo evolucionará el movimiento de las placas en función del ángulo, si el ángulo del plano inclinado pudiese variarse a voluntad?

Problema de Dinámica de la Partícula.

Paginación de entradas

Anteriores 1 … 14 15 16 … 120 Siguientes
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo