Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Problemas

En un recinto a temperatura ambiente de 25 oC se sitúa 1 kg de hielo a -10 oC. El hielo se derrite y alcanza un estado de equilibrio térmico con la atmósfera. Calcular el aumento de entropía del Universo, sabiendo que el calor específico del hielo a presión constante es cp=2.093 kJ/kgoC, que su calor de fusión es L=333.3 kJ/kg y el calor específico del agua c=4.187 kJ/kgoC.

Problema de Entropia y Segundo Principio de la Termodinámica.

En un recinto vacío de volumen 20 cm3 se introduce 1 mg de gas hidrógeno a 17 oC. A continuación se disminuye la temperatura a 10 oC y se hace un vacío parcial hasta reducir su presión a la centésima parte de su valor inicial. a) ¿Qué valores tenían, en mm de Hg, la presión inicial y final del recinto? b) ¿Qué cantidad de hidrógeno fue extraída del recinto? c) ¿Cuántas moléculas de hidrógeno fueron extraídas?
Número de Avogadro: NA=6.023·1023 moléculas/mol.

Problema de Teoría Cinética de los Gases.

En un recipiente de aluminio de 256 g que contiene 206 g de nieve a -11 oC se introducen 100 g de vapor de agua a 100 oC. Calcular la temperatura final de la mezcla. Calor específico del aluminio: 0.219 cal/g oC; calor específico del hielo: 0.5 cal/g oC; calor específico del agua: 1 cal/g oC; calor latente de fusión del hielo: 80 cal/g; calor latente de vaporización del agua: 540 cal/g.

Problema de Calor y Primer Principio de la Termodinámica.

En un recipiente de paredes impermeables al calor hay tres cuerpos, cuyas masas son m1, m2 y m3, sus calores específicos c1, c2 y c3 y sus temperaturas t1=10 oC, t2=50 oC y t3=100 oC. Se verifica que:

Calcular la temperatura de equilibrio.

Problema de Calor y Primer Principio de la Termodinámica.

En un sistema cuyas magnitudes fundamentales fueran la energía E, la fuerza F y la velocidad angular w, ¿cuál serían las dimensiones de la presión P y la aceleración a?

Cuestion de .

En un sistema de unidades en el que el kg es la unidad de fuerza y el metro la de longitud, el momento de inercia es A. ¿Cuál será su valor en el CGS?

Problema de Introducción (Magnitudes y Vectores).

En un sistema óptico, la lente de la figura forma una imagen de un objeto a cierta distancia cuando la lente está en la disposición (a). ¿Dónde y cómo se formará la imagen si la lente es invertida como se indica en la figura (b)? Razone la respuesta.

Cuestion de Óptica geométrica.

En un sonómetro están montadas dos cuerdas de 0.8 m de longitud e igual sección, una de aluminio y otra de acero. Si en la primera la tensión es de 1 kg y en la segunda de 2.85 kg, ambas cuerdas emiten el tono fundamental. Determinar la densidad del acero, sabiendo que la del aluminio de 2.64 g/cm3. Calcular la longitud que ha de tener la cuerda de acero para que, con la misma tensión que la de aluminio, emita el mismo sonido fundamental.

Problema de Interferencias.

En un terreno se lanza verticalmente una pelota hacia arriba, con una velocidad inicial de 10 m/s. El viento produce una fuerza horizontal constante sobre la pelota, que es igual a la quinta parte del peso de ésta. Se pide: a) distancia L entre el punto de impacto y el de lanzamiento; b) velocidad de la pelota en el punto más alto de la trayectoria; c) velocidad de la pelota en el momento del impacto; d) ángulo que forma la velocidad en el impacto con la horizontal; e) altura máxima que alcanzará la pelota. Tómese g=10 m/s2.

Problema de Cinemática de la Partícula.

En un tubo de longitud 2 m, cerrado por uno de sus extremos, se introduce agua hasta una altura de 85 cm. Se coloca un diapasón de frecuencia 382 Hz en el extremo abierto del tubo y se observa un pitido agudo de resonancia. La temperatura a la que se hace la observación es de 40 ºC. a) Determinar el armónico al que corresponde dicha frecuencia así como su frecuencia fundamental; b) si la amplitud de la onda es de 50 cm, determinar la relación de intensidades promediadas en el tiempo entre el punto medio del tubo (a 1 metro de cada extremo) y el punto a 25 cm de extremo superior abierto; c) determinar qué otras alturas de agua dan lugar a pitidos intensos, es decir, condiciones de resonancia, con éste diapasón.
Dato: velocidad del sonido a T=20 ºC: 340 m/s.

Problema de Movimiento Ondulatorio. Aparece en la convocatoria de JUN2007.

Paginación de entradas

Anteriores 1 … 54 55 56 … 120 Siguientes
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo