Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Problemas

Un patinador de 80 kg de masa desciende por una pista helada ABC, alcanzando al finalizar la pista una velocidad v0 que forma un ángulo de 84o con la horizontal. En una competición de salto, debería alcanzar 90 m a lo largo de una pista inclinada 60o respecto de la horizontal. a) ¿Cuál será la velocidad v0 que debe alcanzar al terminar la pista, en el punto C? b) ¿Cuánto tiempo tarda en aterrizar? c) calcular y dibujar las componentes tangencial y normal de la aceleración en el instante t=5 s, contados a partir del despegue de la pista en el punto C, así como el radio de curvatura en ese mismo instante; d) determinar la reacción de contacto con el suelo en el punto más bajo de la pista (punto B) si en dicho punto el radio de curvatura es de 80 m y se encuentra 20 m por debajo del final de la pista. Suponer que el rozamiento tanto con la pista como con el aire es despreciable.

Problema de Dinámica de la Partícula. Aparece en la convocatoria de JUN2015.

Un péndulo consiste en una pequeña masa (m) atada al extremo de una cuerda de longitud L. Tal como muestra la figura la masa se coloca en posición horizontal y se suelta. En el punto más bajo de la oscilación, la cuerda choca con una clavija delgada situada a una distancia R por encima de dicho punto. Cuál es el máximo valor de R para que la masa describa un círculo entero alrededor de la clavija.

Cuestion de Trabajo y Energía.

Un péndulo de 1 m de longitud oscila en un plano vertical. Cuando el péndulo forma con la horizontal un ángulo de 0o su celeridad es de 6 m/s. Determinar las componentes tangencial y normal de la aceleración en dicha posición. ¿Cuál será la magnitud y dirección de la aceleración total?

Problema de Cinemática de la Partícula.

Un péndulo de torsión está formado por un alambre de acero ordinario de 80 cm de longitud y 1 mm de diámetro, que lleva en su extremo inferior un disco homogéneo de plomo de 12 cm de diámetro y 1 cm de espesor. Se gira el disco un cierto ángulo y se abandona después, de modo que efectúe oscilaciones de rotación en un plano horizontal. El tiempo empleado en 100 oscilaciones completas es 315 s. a) ¿Qué esfuerzo tensor soporta el alambre? ¿Se supera el límite elástico? b) Calcular la constante de torsión del péndulo c) determinar el módulo de rigidez del acero del alambre. Densidad del plomo: ρPb =11350 kg/m3; límite elástico del acero: 25·107 N/m2.

Problema de Propiedades Elásticas de los Sólidos.

Un péndulo está constituido por una pequeña esfera de dimensiones que consideraremos despreciables, cuya masa es m=200 g, suspendida de un hilo inextensible y sin peso apreciable, de 2 m de largo. a) Calcular el período para pequeñas amplitudes; b) supongamos que en el momento de su máxima elongación la esfera se ha elevado 20 cm por encima del plano horizontal que pasa por su posición de equilibrio. Calcular su velocidad, energía cinética y tensión del hilo cuando pase por la vertical; c) supongamos que al pasar por la vertical el hilo encuentra un clavo O´ situado 1 m por debajo del punto de suspensión O y normal al plano de oscilación. Describir el movimiento ulterior de la esfera. Calcular la relación de las tensiones del hilo cuando el péndulo alcanza sus posiciones extremas; d) calcular el período de este péndulo, tal como se describe en el apartado anterior, para pequeñas amplitudes.

Problema de Movimiento Oscilatorio.

Un péndulo está formado por una masa M suspendida de un punto fijo O mediante una varilla rígida de masa despreciable y longitud L. El péndulo se encuentra en su posición de equilibrio estable. Una masa m se mueve siguiendo una línea horizontal con velocidad v, que se desea determinar, chocando con el centro de la masa del péndulo y quedando incrustada en ella. Sabiendo que la masa del péndulo después del choque alcanza una altura máxima H sobre la posición inicial, determinar: a) la velocidad de la masa m antes del choque; b) la energía perdida en el choque.

Cuestion de Movimiento Oscilatorio.

Un péndulo simple está formado por una cuerda ideal sin masa e inextensible y una lenteja puntual al final de la cuerda cuya masa es 1 kg. En la Tierra dicho péndulo tarda 1 s en ir de un extremo al opuesto de la oscilación. a) Sabiendo que en la Luna su período aumenta en 2,916 s, ¿cuál es el valor de la gravedad en la Luna? b) Desplazamos el péndulo (obviamente en la Tierra) 90o respecto de la vertical. ¿Con qué velocidad mínima tendremos que lanzarlo hacia abajo para que describa una circunferencia completa? c) resuelve el apartado b) si se sustituye la cuerda por una varilla rígida de masa despreciable.

Problema de Trabajo y Energía. Aparece en la convocatoria de FEB2016.

Un péndulo simple está suspendido del techo de un ascensor parado y se calcula su periodo de oscilación. Describa los cambios, si los hay, cuando el ascensor: a) acelera hacia arriba; b) acelera hacia abajo; c) se mueve con velocidad constante; d) se rompe el cable del que está colgado el ascensor.

Cuestion de Dinámica de la Partícula.

Un péndulo simple tiene un período de 5 s en un lugar de la Tierra donde g=9.81 m/s2. ¿Cuál será el período de este péndulo en la Luna, donde la gravedad es un sexto de la correspondiente a la Tierra?

Problema de Movimiento Oscilatorio.

Un pequeño bloque de masa m, unido a una cuerda metálica tensa, descansa sobre una superficie horizontal lisa. Designando por T a la tensión que soporta la cuerda, determinar la frecuencia de las pequeñas oscilaciones del bloque en la dirección perpendicular a la cuerda. Demostrar que la mínima frecuencia se obtiene cuando .

Problema de Movimiento Oscilatorio.

Paginación de entradas

Anteriores 1 … 96 97 98 … 120 Siguientes
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo