Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Problema

Dado un sistema de coordenadas fijo en la Tierra (supuesta plana y sin movimiento), considérese una bala disparada desde la cola de un avión hacia atrás con una velocidad de 800 m/s. La velocidad del avión respecto a Tierra es de 700 m/s. Descríbase el movimiento de la bala: a) en el sistema de referencia de la Tierra; b) en el sistema de referencia del avión; c) calcular el ángulo bajo el cual debe apuntar el cañón de modo que sea nula la componente horizontal de la velocidad de la bala en el sistema de referencia de la Tierra.

Problema de Cinemática de la Partícula.

El avión A con equipo detector de radar, vuela horizontalmente a 12192 m de altura y aumenta su celeridad a razón de 1.22 m/s2. Su radar detecta un avión que vuela en la misma dirección y en el mismo plano vertical a una altura de 18288 m. Si la celeridad de A es de 965 km/h en el instante en que θ=30o, determinar los valores de y en el mismo instante si B tiene una celeridad constante de 1448 km/h.

Problema de Cinemática de la Partícula.

¿Que aceleración deberá tener el vagón para que el bloque A se mantenga en la posición de la figura, si el coeficiente de rozamiento entre el bloque y la pared del vagón es μ?. ¿Cómo describiría el comportamiento del bloque un observador situado en el vagón?

Problema de Dinámica de la Partícula.

Una pelota de béisbol de 100 g se lanza hacia el bateador con una velocidad de 12 m/s. Si el tiempo de contacto entre el bate y la pelota es de 0.02 s y ésta después de ser golpeada por el bate sale con una velocidad de 30 m/s en la dirección indicada en la figura, calcular la fuerza media ejercida sobre la pelota.

Problema de Dinámica de la Partícula.

Un bloque P de 500 g descansa sobre una mesa horizontal sin rozamiento a una distancia de 0.400 m de una espiga fija O. El bloque está unido a la espiga O por un cordón elástico de constante k=100 N/m y de una longitud de 0.900 m cuando está sin deformar. Si el bloque se pone en movimiento hacia la derecha como se indica en la figura, determinar: a) la velocidad v1 para la cual la distancia del bloque al punto O alcanzará un valor máximo de 1.2 m; b) la velocidad v2 cuando OP=1.2 m; c) el radio de curvatura de la trayectoria del bloque cuando OP=1.2 m.

Problema de Trabajo y Energía.

La energía potencial de un sistema constituido por dos partículas que se encuentran separadas una distancia r es:

en donde A es una constante. Determine la fuerza radial F(r).

Problema de Trabajo y Energía.

Dos partículas de masas m1=2 kg y m2=5 kg pueden moverse libremente y sin fricción sobre un alambre guía horizontal. Si la partícula m1 se mueve con una velocidad v1=17 m/s y alcanza a la m2, que tiene un resorte ideal sin masa de constante k=4480 N/m sujeto por el lado por el que se aproxima m1, que se mueve en el mismo sentido con una velocidad v2=3 m/s (ver figura), determinar: a) la máxima compresión del resorte cuando colisionan las dos partículas; b) las velocidades finales de las mismas.

Problema de Dinámica de los Sistemas de Partículas.

Entre dos láminas A y B fluye una capa continua de agua con velocidad v. La corriente se divide en dos partes por medio de una placa lisa horizontal C. Llamando Q al caudal total, hallar el caudal en cada una de las corrientes resultantes. La placa C sólo puede ejercer una fuerza vertical sobre el agua.

Problema de Dinámica de los Sistemas de Partículas.

Una cuerda vertical de longitud l=1 m está tensa bajo un peso de 20 kg atado a su extremo. En el centro de la cuerda hay una masa pequeña de 1 g. Separamos este pequeño peso de su posición de equilibrio una distancia pequeña x y lo soltamos. a) Demostrar que se mueve con un m.a.s.; b) hallar la frecuencia de la vibración.

Problema de Movimiento Oscilatorio.

Dibujar la curva de Lissajous resultante de la superposición de dos movimientos vibratorios perpendiculares en el caso de que la relación de pulsaciones sea , teniendo en cuenta que las amplitudes guardan una relación inversa a la anterior y que la diferencia de fase es de 45o.

Problema de Movimiento Oscilatorio.

Paginación de entradas

Anteriores 1 … 20 21 22 … 71 Siguientes
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo