Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Problema

Una columna de hormigón armado es comprimida mediante una fuerza F. Calcular la parte de carga que soporta el hierro y la parte que soporta el hormigón sabiendo que el módulo de Young del hormigón es del hierro, y la sección del hierro es de la del hormigón.

Problema de Propiedades Elásticas de los Sólidos.

El eje de transmisión de un automóvil es de acero y mide 1.8 m de longitud por 2.5 m de diámetro. a) ¿Qué ángulo se tuerce uno de sus extremos respecto al otro cuando el eje está transmitiendo una potencia de 30 C. V. a 2400 r.p.m.? b) ¿Qué energía elástica está entonces almacenada en el eje? Módulo de rigidez del acero: G=7.8·1010 N/m2.

Problema de Propiedades Elásticas de los Sólidos.

Dos rayos luminosos paralelos inciden sobre los centros de las caras de un cubo de vidrio de lado l, tal como indica la figura, formando ángulos de incidencia de 45o. Ambos rayos están situados en un mismo plano, que pasa por el centro del cubo, y se encuentran en el centro de una arista después de sufrir la refracción. Calcular el índice de refracción del vidrio.

Problema de Reflexión y Refracción de Ondas.

La fuente de luz utilizada para iluminar una doble rendija de Young emite dos longitudes de onda, la más larga de 700 nm. La quinta franja oscura correspondiente a la longitud de onda más grande ocupa la misma posición que la quinta franja brillante (sin contar el máximo central) del patrón de interferencia de la longitud de onda más corta. Determine la longitud de onda de la segunda componente.

Problema de Interferencias.

Sobre una película de vidrio en forma de cuña (índice de refracción 1.5) incide normalmente luz con λ=720 nm. El ángulo de la cuña es α=1.2·10-4 radianes. Hallar la separación horizontal entre dos franjas oscuras sucesivas. La observación se lleva a cabo por reflexión.

Problema de Interferencias.

Un hilo de aluminio de longitud l1=60 cm y sección recta de 10-2 cm2 es soldado a un hilo de acero de la misma sección y longitud l2=86.6 cm. Se fija el hilo así formado sobre la pared y se aplica sobre el extremo libre una tensión de 10 kg. Se producen ondas transversales en el hilo usando una fuente externa de frecuencia variable. a) Calcular la frecuencia más baja para la cual se forman ondas estacionarias de tal forma que la unión de los dos hilos sea un nodo. b) ¿Cuál es el número total de los nodos observados en esta frecuencia excluyendo los dos nodos de los extremos del hilo? ρAl=2.6 g/cm3; ρAcero=7.8 g/cm3</SUP.

Problema de Interferencias.

Un haz de rayos X de longitud de onda λ=5·10-11 m incide sobre una muestra en polvo formada por cristales microscópicos de ClK orientados al azar. El espaciado de la red cristalina es 3.14·10-10 m. Se coloca una película fotográfica a 0.1 m de la muestra, determinar: a) el radio de los círculos correspondientes a los espectros de primero y segundo orden de los planos que tienen el mismo espaciado que la red. b) el radio de los círculos que resultan de planos que forman un ángulo de 45o con los del apartado a.

Problema de Difracción.

Para encontrar la distancia focal de una lente divergente se coloca ésta en contacto con una convergente de 10 dioptrías. Un objeto que se encuentra a 30 cm del sistema así formado da una imagen real a 50 cm del mismo. ¿Cuál es la distancia focal de la lente divergente?

Problema de Óptica geométrica.

Se dispone de una lente plano-convexa, de índice de refracción 1.5 y distancia focal 20 cm a la que se acopla otra lente de índice de refracción 1.6 de forma que las superficies en contacto tengan el mismo radio. Se desea que el sistema tenga una potencia de 8 dioptrías. a) ¿Cuál ha de ser el radio de la otra superficie de esta segunda lente? b) Se forma un sistema óptico centrado con dos lentes convergentes iguales a la anterior, es decir, de 8 dioptrías cada una. Un objeto está situado 15 cm a la izquierda de la primera lente. Calcular cuál debe ser la separación entre las dos lentes para que la imagen final sea real, derecha y cinco veces mayor que el objeto; c) entre las dos lentes convergentes se introduce una lente divergente de 20 cm de focal. Buscar las dos posiciones de esta lente para las cuales la imagen final es real y se forma a 75 cm de la última de las lentes.

Problema de Óptica geométrica.

Se quieren obtener 52 g de agua a 20 oC mezclando agua a 15 oC con agua a 80 oC. ¿Qué cantidades deberán tomarse de cada una?

Problema de Calor y Primer Principio de la Termodinámica.

Paginación de entradas

Anteriores 1 … 47 48 49 … 71 Siguientes
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo