Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Problema

Se pule una cara de un bloque grande de vidrio flint ligero para formar en ella una superficie esférica convexa con r=12 cm. Se coloca una pequeña fuente de luz amarilla a la izquierda del vértice a una distancia «a» y se dispone un diafragma para que elimine los rayos no paraxiales. Hallar la distancia imagen, la amplificación o aumento y el carácter de la imagen formada por la superficie cuando «a» es: a) 90 cm; b) 32 cm; c) 20.7 cm; d) 15 cm. Índice de refracción del vidrio: 1.58.

Problema de Óptica geométrica.

Delante de una lente convergente de 5 dioptrías y a 30 cm de ella se encuentra un objeto. A 1 m detrás de la lente hay un espejo esférico que da una imagen virtual a 28.6 cm del mismo. a) Calcular el radio de curvatura del espejo; b) si entre el objeto y la lente convergente se intercala otra lente divergente de 3 dioptrías, determinar la distancia entre las dos lentes para que la imagen final sea real y quede a 10 cm del espejo; c) si el objeto tiene una altura de 10 cm, ¿qué tamaño tendrá la imagen en este segundo supuesto?

Problema de Óptica geométrica.

Una lente biconvexa de radios r1=20 cm y r2=30 cm hueca de paredes delgadas se sumerge en un tanque de agua cuyo índice de refracción es 1.33.
Determinar en esta situación la distancia focal de la lente.

Problema de Óptica geométrica.

En un calorímetro de latón sin pérdidas, de 240 g, que contiene 750 cm3 de agua a 20.6 oC se echa una moneda de oro de 100 g a 98 oC y la temperatura sube a 21.0 oC. Determinar la cantidad de oro y de cobre que integra la moneda. Calor específico del latón: 0.09 cal/g oC; calor específico del cobre: 0.0922 cal/g oC; calor específico del oro: 0.031 cal/g oC; calor específico del agua: 1 cal/g oC.

Problema de Calor y Primer Principio de la Termodinámica.

En un recinto vacío de volumen 20 cm3 se introduce 1 mg de gas hidrógeno a 17 oC. A continuación se disminuye la temperatura a 10 oC y se hace un vacío parcial hasta reducir su presión a la centésima parte de su valor inicial. a) ¿Qué valores tenían, en mm de Hg, la presión inicial y final del recinto? b) ¿Qué cantidad de hidrógeno fue extraída del recinto? c) ¿Cuántas moléculas de hidrógeno fueron extraídas?
Número de Avogadro: NA=6.023·1023 moléculas/mol.

Problema de Teoría Cinética de los Gases.

Un recipiente cuyo volumen es de 10 l contiene 16 g de oxígeno siendo su temperatura de 13 oC y está en comunicación por medio de una llave, inicialmente cerrada, con otro recipiente de volumen 8 l conteniendo oxígeno a la presión de 700 mm de Hg y temperatura de 13 oC. Se abre la llave que pone en comunicación ambos recipientes. Determinar: a) peso de oxígeno en el segundo recipiente; b) indicar de qué a cuál recipiente pasa oxígeno; c) presión final del gas, una vez que se ha alcanzado el equilibrio. Peso molecular del oxígeno: 32 g/mol.

Problema de Teoría Cinética de los Gases.

Calcular el aumento de la entropía específica del agua cuando se la calienta a la presión atmosférica constante desde -18 oC donde se encuentra en forma de hielo, hasta 150 oC, donde se encuentra en forma de vapor sobrecalentado. Datos: calor específico del hielo: 0.5 cal/goC; calor específico del agua: 1.0 cal/goC; calor específico del vapor: 0.47 cal/goC; calor de fusión del hielo: 80 cal/g; calor de vaporización del agua: 540 cal/g.

Problema de Entropia y Segundo Principio de la Termodinámica.

Tres frecuencias de resonancia sucesivas de un tubo de órgano son 1310, 1834 y 2358 Hz. a) ¿Está el tubo cerrado por un extremo o abierto por ambos extremos? b) ¿Cuál es la frecuencia fundamental? c) ¿Cuál es la longitud del tubo? d) A continuación dos tubos idénticos a los del problema se utilizan como fuentes coherentes emitiendo ambos la frecuencia de 1310 Hz, enfrentados y separados por 1.5 m. ¿En qué posiciones de la recta que une ambos tubos un observador puede escuchar máximos de interferencia? Velocidad del sonido en aire en las condiciones de la experiencia: 340 m/s.

Problema de Interferencias. Aparece en la convocatoria de SEP2005.

Un disco de masa m y radio r rueda sin deslizar sobre la cara interior de una superficie cilíndrica de radio R. Sabiendo que el disco parte del reposo en la posición indicada en la figura, obtener las expresiones que proporcionan: a) la velocidad lineal del disco a su paso por B; b) el módulo de la reacción normal del suelo sobre el disco en B.

Problema de Dinámica del Sólido Rígido.

Un bloque de masa m=5 kg está unido a un muelle no deformado de constante k=1 kN/m. Los coeficientes de rozamiento estático y cinético entre el bloque y el plano son μs=0.6 y μk=0.5 respectivamente. Si se le aplica al bloque lentamente una fuerza F hasta que la tensión en el muelle llega a 150 N y entonces se retira repentinamente, hallar: a) la velocidad que tiene el bloque al volver a la posición inicial (antes de empezar a aplicar la fuerza F); b) la velocidad máxima que alcanza el bloque; c) la distancia hacia la izquierda que recorre el bloque hasta detenerse; d) ¿retrocederá después el bloque hacia la derecha? Si la respuesta es afirmativa, ¿qué distancia recorrerá hasta detenerse?

Problema de Trabajo y Energía. Aparece en la convocatoria de JUL2013.

Paginación de entradas

Anteriores 1 … 49 50 51 … 71 Siguientes
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo