Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Problema

Dos espejos planos forman entre sí un ángulo próximo a 180o (ver figura). A distancias iguales b de los espejos se encuentra una fuente luminosa S. Determinar el intervalo entre las franjas de interferencia vecinas en la pantalla MN, situada a una distancia OA=a del punto de intersección de los espejos. La longitud de onda luminosa es conocida e igual a l. La cortina C impide la incidencia directa de la luz de la fuente en la pantalla.

Problema de Interferencias.

La función de onda estacionaria en una cuerda fija por sus dos extremos es:

y(t, x)=0.3sen(0.01x)cos(200t)

con t en segundos y x e y en cm; a) determinar la amplitud, frecuencia, y velocidad de fase de las ondas progresivas cuya superposición da lugar a esta onda estacionaria; b) escribir las funciones de onda correspondientes a estas ondas progresivas; c) hallar la distancia internodal.

Problema de Interferencias.

Una pantalla provista de una abertura circular de 1 mm de diámetro se coloca a 1 m de una fuente luminosa puntual A, tal como se indica en la figura, y a 4 m de un punto B, donde se desea conocer el estado de vibración. La luz procedente de la fuente luminosa tiene una longitud de onda de 500 nm. Calcular: a) la situación de los máximos y mínimos de intensidad y el número de ellos cuando la distancia del punto B al centro de la abertura se hace variar desde los 4 m a 10 cm; b) ¿cómo es el centro de los anillos de difracción que se forman cuando en el punto B se coloca una pantalla situada normalmente al haz?

Problema de Difracción.

Si el humor acuoso del ojo tiene un índice de refracción de 1.34 y la distancia del vértice de la córnea a la retina es de 2.2 cm, ¿cuál es el radio de curvatura de la córnea para el cual los objetos distantes se enfocarán sobre la retina? Supóngase que la refracción se realiza en el humor acuoso.

Problema de Óptica geométrica.

Para la construcción de una lente doble del objetivo de una cámara fotográfica, un constructor utilizó una lente divergente con distancia focal f1=5 cm, colocándola a una distancia l=45 cm de la película. ¿Dónde es preciso colocar la lente convergente con distancia focal f2=8 cm para que en la película resulte una imagen nítida de objetos distantes?

Problema de Óptica geométrica.

Un vehículo circula por una carretera a una velocidad constante de 108 km/h tocando el claxon. Un hombre situado en un camino perpendicular a la carretera y a 100 m del cruce percibe el sonido del claxon con una cierta sonoridad en el instante en que el vehículo pasa por el cruce y deja de percibirlo 20 s después. Sabiendo que la frecuencia de emisión del sonido del claxon es 2 veces superior a la frecuencia de vibración fundamental de una cuerda de piano de 50 cm de longitud y 5 g de masa cuando está sometida a una fuerza tensora de 400 N. Determinar:
a)La frecuencia de emisión
b)la frecuencia que percibe a los 10 segundos de pasar por el cruce
c) la sensación sonora cuando estaba en el cruce.
Tómese la velocidad del sonido v=340 m/s

Problema de Movimiento Ondulatorio.

¿Qué peso de vapor de agua a 100 oC debe inyectarse en un recipiente metálico de 30 kg de peso que contiene 100 kg de hielo a -20 oC para ponerlo a la temperatura de 25 oC, sabiendo que previamente se añadieron 15 kg de agua a 100 oC? ¿En qué condiciones térmicas se encontraba el baño cuando se empezó a inyectar el vapor? Calor específico del metal: 0.2 cal/g oC; calor específico del hielo: 0.5 cal/g oC; calor específico del agua: 1 cal/g oC; calor de fusión del hielo: 80 cal/g; calor de vaporización del agua: 537 cal/g.

Problema de Calor y Primer Principio de la Termodinámica.

Se tiene un mol de oxígeno a 25 oC y 770 mm de Hg de presión. Calcular: a) la densidad absoluta en g/l; b) la velocidad media de agitación de sus moléculas; c) el número de átomos de oxígeno que contendrá. Número de Avogadro: NA=6.023·1023 moléculas/mol; constante de los gases ideales: R=0.082 atml/Kmol=8.31 J/molK.

Problema de Teoría Cinética de los Gases.

Un recipiente cilíndrico cerrado, de paredes impermeables al calor, está dividido en dos partes iguales por un émbolo sin rozamiento, también impermeable al calor. En cada compartimento hay un gas ideal, biatómico e inicialmente ambos están a T=27 oC y P=71 cm de Hg. El volumen total del cilindro es V=10 l. El compartimento de la izquierda lleva un sistema de calefacción que permite calentar el gas que hay en él. Se acciona este sistema y se triplica así la presión P1=3P. Calcular: a) las temperaturas y volúmenes finales de los dos compartimentos; b) la cantidad de calor absorbida por el gas de la izquierda; c) el incremento de entropía del conjunto. Tómese 1 atm=101324.72 N/m2.

Problema de Entropia y Segundo Principio de la Termodinámica.

El dispositivo de la figura está constituido por un cilindro adiabático provisto de un pistón, también adiabático. Un tabique metálico interior M, de masa despreciable y buen conductor del calor, lo divide en dos partes A y B. Inicialmente el tabique metálico está cubierto por una superficie adiabática y los recintos A y B contienen cada uno 1 mol de un mismo gas ideal monoatómico (cv=12.47 J/molK) a la presión de 101.3 kPa y temperaturas de 1500 K (A) y 373 K (B). Se elimina la superficie adiabática que cubre M y al mismo tiempo, el gas contenido en A se comprime cuasiestática e isotérmicamente (1500 K). Cuando la temperatura del gas B alcanza también los 1500 K se detiene el proceso de compresión. Calcúlese: a) el trabajo de compresión isoterma realizado sobre el gas que ocupa el recinto A; b) el valor final de la presión en los recintos A y B; c) las variaciones de entropía de los gases contenidos en A y B, de la placa metálica M y del Universo. Constante de los gases perfectos: R=8.31 J/molK.

Problema de Entropia y Segundo Principio de la Termodinámica.

Paginación de entradas

Anteriores 1 … 60 61 62 … 71 Siguientes
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo