Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Problema

Una barra de acero de 1 m de longitud y 0.20 cm de radio está fija rígidamente por uno de sus extremos (ver figura). Un disco de 20 cm de radio está unido al otro extremo, que puede girar libremente. Al suspender un peso de 500 g de una cuerda enrollada al disco, se observa que la carga desciende 10 cm. a) ¿Cuál es el módulo de rigidez o cizalladura del material de que está hecha la barra? b) ¿Cuál es la disminución de energía potencial de la carga? c) ¿Cuál es la energía potencial elástica de la barra sometida a torsión?

Problema de Propiedades Elásticas de los Sólidos.

Cuando se mira normalmente a una superficie que separa dos medios de índice de refracción n1 y n2 los objetos se ven a una distancia aparente S2 de la superficie que es distinta de la distancia real S1 a la que se encuentran. Determinar la relación que existe entre los índices de refracción de los medios y estas distancias.

Problema de Reflexión y Refracción de Ondas.

La figura muestra la disposición llamada espejo de Lloyd, el cual produce diagramas de interferencia. Las fuentes coherentes de luz son S1 y su imágen S2 que se debe a la reflexión en la superficie superior de la placa de vidrio. Por consiguiente los rayos que interfieren son los que provienen directamente de la fuente y los reflejados por el vidrio. ¿Qué concluirías acerca del cambio de fase por reflexión si la franja correspondiente a una diferencia de camino igual a cero es a) brillante, b) oscura? En el experimento real se obtiene el resultado b) ¿Es de esperar este resultado?

Problema de Interferencias.

Una lente plano-convexa de 2 dioptrías cuyo índice de refracción es 1.5, se coloca sobre una lámina de vidrio plana apoyándola por su cara convexa. El conjunto se ilumina por encima de la cara plana con luz de 700 nm. Calcular el radio de la séptima circunferencia que presenta máximo de interferencia, considerando que se hace la observación por refracción. La lente se considera delgada.

Problema de Interferencias.

Un tubo largo está formado por la unión de dos tubos concéntricos de radios casi iguales de modo que la longitud del tubo puede variarse a voluntad. Este tubo contiene aire (masa molecular 28.84 g/mol) a 77oC. Un diapasón vibra en las proximidades de uno de sus extremos con una frecuencia de 500 ciclos/segundo. Se produce resonancia (el tubo se encuentra recorrido por ondas estacionarias) cuando la longitud del tubo se ajusta a 56.25, 93.75 y 131.25 cm, pero no para longitudes intermedias. a) Deducir con estos datos si el tubo es abierto por los dos lados, o abierto por un solo extremo; b) calcular la velocidad del sonido en aire a 77oC; c) calcular, a partir del resultado anterior, la razón ϒ de los calores específicos para el aire. d) la longitud de este tubo y de otro abierto por ambos extremos se escogen de modo que sus frecuencias fundamentales son iguales. ¿Qué otras frecuencias tienen en común ambos tubos? e) Sabiendo que la potencia sonora emitida por el tubo inicial es de 4π·10-3 W; determinar la intensidad y la sonoridad percibidas por un observador situado a 2 m del tubo sonoro. ¿A qué distancia tendrá que situarse el observador para dejar de percibir el sonido? Intensidad umbral para la frecuencia de dicho tubo: Io=4·10-12 W/m2.

Problema de Interferencias.

Una lente convexo-plana de 1 cm de grosor tiene la cara convexa en el aire y la plana sumergida en un líquido de índice de refracción 1.3. Se coloca un objeto a 25 cm de la cara de la lente que está en el aire. ¿Dónde estará la imagen?
Radio de la cara convexa: 20 cm; índice de refracción del vidrio: 1.5.

Problema de Óptica geométrica.

Para un observador cuya distancia mínima de visión distinta es de 20 cm, el aumento de un microscopio enfocado al infinito es de 1000. Sabiendo que el ocular tiene una convergencia de 100 dioptrías y que la longitud del microscopio es de 25 cm, calcular la distancia focal del objetivo, la longitud óptica del tubo y la distancia del objeto al objetivo.

Problema de Óptica geométrica.

Una lente biconvexa de radios r1=20 cm y r2=30 cm hueca de paredes delgadas se sumerge en un tanque de agua cuyo índice de refracción es 1.33.
Determinar en esta situación la distancia focal de la lente.

Problema de Óptica geométrica.

En un calorímetro de latón sin pérdidas, de 240 g, que contiene 750 cm3 de agua a 20.6 oC se echa una moneda de oro de 100 g a 98 oC y la temperatura sube a 21.0 oC. Determinar la cantidad de oro y de cobre que integra la moneda. Calor específico del latón: 0.09 cal/g oC; calor específico del cobre: 0.0922 cal/g oC; calor específico del oro: 0.031 cal/g oC; calor específico del agua: 1 cal/g oC.

Problema de Calor y Primer Principio de la Termodinámica.

En un recinto vacío de volumen 20 cm3 se introduce 1 mg de gas hidrógeno a 17 oC. A continuación se disminuye la temperatura a 10 oC y se hace un vacío parcial hasta reducir su presión a la centésima parte de su valor inicial. a) ¿Qué valores tenían, en mm de Hg, la presión inicial y final del recinto? b) ¿Qué cantidad de hidrógeno fue extraída del recinto? c) ¿Cuántas moléculas de hidrógeno fueron extraídas?
Número de Avogadro: NA=6.023·1023 moléculas/mol.

Problema de Teoría Cinética de los Gases.

Paginación de entradas

Anteriores 1 … 64 65 66 … 71 Siguientes
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo