Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Problema

Un péndulo simple está formado por una cuerda ideal sin masa e inextensible y una lenteja puntual al final de la cuerda cuya masa es 1 kg. En la Tierra dicho péndulo tarda 1 s en ir de un extremo al opuesto de la oscilación. a) Sabiendo que en la Luna su período aumenta en 2,916 s, ¿cuál es el valor de la gravedad en la Luna? b) Desplazamos el péndulo (obviamente en la Tierra) 90o respecto de la vertical. ¿Con qué velocidad mínima tendremos que lanzarlo hacia abajo para que describa una circunferencia completa? c) resuelve el apartado b) si se sustituye la cuerda por una varilla rígida de masa despreciable.

Problema de Trabajo y Energía. Aparece en la convocatoria de FEB2016.

Una masa de un gas ideal (ϒ=1.4) ocupa 2 l y está sometido a una presión de 1 atm. Su temperatura es de 27 oC (estado 1). Mediante una compresión adiabática se consigue reducir su volumen a la cuarta parte (estado 2). A continuación se produce un calentamiento a presión constante hasta alcanzar un volumen de 1.5 l (estado 3). Mediante una expansión adiabática se llega al volumen inicial (estado 4), para volver, por último, al estado inicial. Sabiendo que para pasar del estado 2 al estado 3 se emplearon 594.5 cal se pide: a) dibujar el ciclo; b) calcular P, T y V en todos los estados; c) calcular el aporte o pérdida de energía que necesita el sistema para pasar del estado 4 al estado inicial; d) rendimiento del ciclo.

Problema de Entropia y Segundo Principio de la Termodinámica. Aparece en la convocatoria de JUN2000.

En un tubo existen las tres frecuencias de resonancia sucesivas de 75, 125 y 175 Hz. a) ¿Corresponde esto a un tubo abierto por un extremo o abierto por ambos extremos? b) ¿Cuál es la frecuencia fundamental? c) ¿Qué armónicos son estas frecuencias de resonancia? d) Un alumno de física anda a lo largo de un vestíbulo grande portando un diapasón que vibra con la frecuencia del décimo armónico proporcionado por el tubo anterior. El extremo del vestíbulo está cerrado, de modo que el sonido se refleja en él. El estudiante oye 4 batidos por segundo. ¿Con qué velocidad está andando? Velocidad del sonido: 340 m/s.

Problema de Interferencias. Aparece en la convocatoria de SEP2001.

Se tiene un resorte de longitud prácticamente nula cuando está descargado y cuya constante elástica es 80 N/m. Se estira lentamente bajo la acción de una masa de 5 kg, sometida a la acción de la gravedad (g=9.8 m/s2). Hallar: a) longitud en el equilibrio del resorte estirado por el peso de dicha masa; b) si en estas condiciones se hace oscilar la masa verticalmente, calcular la frecuencia angular y la frecuencia de las oscilaciones del movimiento; c) se desplaza la masa 1 cm por debajo de su posición de equilibrio y se le imprime una velocidad inicial hacia abajo de 2 cm/s. Calcular la energía total del movimiento armónico; d) calcular la amplitud del movimiento en cm y la velocidad máxima en cm/s; e) calcular la máxima fuerza restauradora y la aceleración máxima del movimiento en cm/s2. f) Suponiendo que el sistema es disipativo, se observa que la amplitud de oscilación al cabo de 1 minuto es de 1 cm. Calcular el parámetro de amortiguamiento; g) calcular el tanto por uno de la energía total que el sistema pierde en cada oscilación; h) suponiendo que el sistema se considera detenido cuando su amplitud es menor de 1 mm, ¿cuántos minutos tardará en detenerse?

Problema de Movimiento Oscilatorio. Aparece en la convocatoria de JUL2003.

Sabiendo que 1 atmósfera es la presión ejercida por una columna de mercurio de densidad 13.59 g/cm3 de 76 cm de altura y 1 cm2 de sección, calcular sus equivalencias en los sistemas CGS, Internacional y técnico.

Problema de Introducción (Magnitudes y Vectores).

Dedúzcase por cálculo dimensional la fórmula de Stokes que expresa la resistencia R ofrecida por un fluído de viscosidad η al desplazarse en su seno, en régimen laminar, una esfera de radio r a velocidad v. Tomar para la viscosidad la expresión:

Problema de Introducción (Magnitudes y Vectores).

Un punto M recorre una recta con una velocidad v y una aceleración a, y está unido por un hilo de longitud L que pasa por un anillo O con otro punto M1 que recorre una recta paralela a la primera. Hallar la velocidad v1 y la aceleración a1 del punto M1.

Problema de Cinemática de la Partícula.

El tope horizontal A, que actúa sobre la barra BO, tiene una velocidad hacia la derecha de 7.6 cm/s y una aceleración de 10 cm/s2 en la posición para la que θ=30o. Calcular la aceleración angular de la barra en ese instante.

Problema de Cinemática de la Partícula.

Un cometa de masa M se observa a una distancia de 1011 m del Sol viajando hacia él a una velocidad de 5.16·104 m/s haciendo un ángulo de 45o con el radio vector del Sol. Obtener: a) su energía total y su momento angular; b) la ecuación de la órbita; c) la distancia de mayor cercanía al Sol.

Problema de Gravitación.

Después de concluir su misión de exploración en la Luna, los dos astronautas que formaron la tripulación del módulo de excursión lunar Apolo (LEM) se reunirían con el módulo de comando que había permanecido en una órbita circular alrededor de la Luna. Antes de su regreso a la Tierra, los astronautas pondrían su nave en una posición adecuada, de modo que el LEM se colocaría hacia la parte posterior de ésta. Cuando el módulo de comando pasara por A, el LEM se dejaría a la deriva, para estrellarse sobre la superficie de la Luna en el punto B. Sabiendo que el módulo de comando se encontraba en una órbita alrededor de la Luna a una altitud de 120 km, y que el ángulo AOB fue de 50o, determínese la velocidad del LEM relativa al módulo de comando al dejarse a la deriva. El punto A es el apogeo de la trayectoria elíptica de choque y la masa de la Luna es 0.0123 veces la masa de la Tierra.

Problema de Gravitación.

Paginación de entradas

Anteriores 1 … 6 7 8 … 71 Siguientes
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo