Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Problema

Un sistema óptico está formado por dos lentes, la primera convergente de 60 cm de focal y la segunda divergente, separadas por 20 cm. a) Determinar la potencia de la segunda lente si estando el objeto a 15 cm de la lente convergente la imagen final dada por el sistema es 3.75 veces menor que el objeto; b) ¿cuál es el carácter de la imagen? c) la lente divergente está formada a su vez por dos lentes yuxtapuestas, una biconvexa de índice de refracción 1.2 y radios iguales y otra cóncavo-convexa de índice de refracción 1.8 y cuyos radios están en relación 1 a 3. Determinar los radios de curvatura de las lentes que componen la divergente; d) si en lugar de la lente divergente colocamos un espejo esférico en su misma posición, ¿qué radio debe tener dicho espejo para que el carácter y tamaño de la imagen siga siendo igual que antes? ¿Se trata de un espejo cóncavo o convexo?

Problema de Óptica geométrica. Aparece en la convocatoria de JUN2002.

La nave espacial «Calister» orbita en torno a la Tierra describiendo la trayectoria elíptica (1). Las distancias de la nave al centro de la Tierra en el apogeo y perigeo son 20000 km y 10000 km respectivamente. Determinar: a) la velocidad de la nave en dichos puntos; b) la ecuación de la cónica que describe esta trayectoria. c) En el apogeo, la nave «Calister» enciende los motores para frenarse y pasar a una nueva orbita elíptica (2). En esta nueva órbita elíptica la nave debe tener una velocidad en su perigeo de 8116 m/s. Determinar la distancia de máxima aproximación a la Tierra para la nueva órbita elíptica (2). d) Finalmente la nave «Calister» desea encontrarse con la nave «Epolus» que se encuentra describiendo la orbita circular (3). Determinar la variación de velocidad que se debe comunicar a la nave «Calister» en las proximidades del perigeo de la órbita elíptica (2) para que tenga lugar el acoplamiento de ambas en dicho punto; e) determinar la posición en que debe encontrarse «Epolus» cuando «Calister» esté en su apogeo (θ), para que tenga lugar dicho acoplamiento de ambas en el perigeo de «Calister».
Datos: G=6.67•10-11 Nm2kg-2; MTierra = 6.1024 kg

Problema de Gravitación. Aparece en la convocatoria de FEB2005.

Paginación de entradas

Anteriores 1 … 70 71
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo