Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Problema

Una lenteja está unida a un hilo de longitud 1.2 m y se abandona, partiendo del reposo en A, cuando θA=4o. Calcular la distancia d para que el sistema tarde 2 s en volver a la posición A.

Problema de Movimiento Oscilatorio.

Un cuerpo de masa m se halla suspendido de un resorte helicoidal, habiéndose medido el tiempo empleado en 100 oscilaciones completas para los siguientes valores de m:

m (kg)

t de 100 oscilaciones (s)

1

115.3

2

162.25

3

198.7

7

303.5

 

a) ¿Cuál es la constante recuperadora del resorte?; b) para una masa de 5 kg y sabiendo que la velocidad al pasar por la posición de equilibrio es de 5 m/s, calcular la aceleración al pasar por el punto de máxima elongación; c) una fuerza periódica actúa sobre esa masa de 5 kg. La fuerza de amortiguamiento es proporcional a la velocidad instantánea y vale 100 N cuando la velocidad es de 2.5 m/s. Calcular la ecuación del movimiento sabiendo que para t=0 la posición es 5 m y la velocidad es de -25 m/s.

Problema de Movimiento Oscilatorio.

Un satélite de comunicaciones S de 200 kg de masa sigue una órbita circular en torno a la Tierra, en sentido antihorario y a una altura de 200 km sobre la superficie de la misma. Determinar: a) su velocidad; b) el tiempo que tarda en recorrer dicha órbita completa; c) la energía mínima para mantenerlo en órbita; d) para reparar una avería en una de sus antenas se envía desde tierra un vehículo espacial que una vez que ha alcanzado una altura de 100 km y apaga sus motores tiene una velocidad vA=7882.9 m/s en una dirección tal que forma con la vertical un ángulo φ, siguiendo desde ese instante una trayectoria elíptica de aproximación, que llega a ser tangente en B (punto de encuentro) a la trayectoria del satélite. Determinar dicho ángulo φ; e) determinar también el ángulo θ que define la posición del punto A en la órbita elíptica.

Problema de Gravitación. Aparece en la convocatoria de JUN1997.

Una barra se alarga el 2% al someterla, dentro del campo elástico, a un esfuerzo de tracción de 103 atm, y pierde el 20% de su peso al sumergirla en agua. Determinar la velocidad de propagación del sonido en dicha barra.

Problema de Movimiento Ondulatorio.

Un observador en reposo frente a una vía férrea tarda 5 s en oir el silbido de una locomotora, distante y en reposo, con un tono continuo de 300 ciclos/segundo. Al cabo de ese tiempo el tono del sonido se va haciendo más agudo, llegando en 10 s más a ser de 330 ciclos/segundo y permaneciendo otra vez constante.
a) Explicar la causa de los fenómenos descritos; b) calcular la posición, aceleración media y velocidad final de la locomotora.

Problema de Movimiento Ondulatorio.

Una varilla de latón de 80 cm de longitud y sección recta circular de 6 mm de diámetro se encuentra sometida a fuerzas de compresión en sus extremos que le producen un acortamiento de 2 mm. a) ¿Cuál es la magnitud del esfuerzo compresor a lo largo de la varilla? b) ¿Cuál es la fuerza compresora en los extremos de la varilla? c) ¿Qué expansión transversal unitaria experimenta la varilla? Módulo de Young del latón: E=10.4·1010 N/m2; coeficiente de Poisson: μ=0.37

Problema de Propiedades Elásticas de los Sólidos.

Un anillo homogéneo de densidad ρ gira en su propio plano alrededor de un eje normal al mismo que pasa por su centro, con una velocidad lineal v. Determinar el esfuerzo de tensión a que está sometido el material del anillo en función de la citada velocidad v. Como aplicación numérica determinar la velocidad máxima a que podrá girar un anillo de hierro de densidad 7.8 g/cm3 si la tensión de rotura es de 4·103 kp/mm2.

Problema de Propiedades Elásticas de los Sólidos.

Una de las caras de un paralelepípedo de vidrio, de índice de refracción nv=1.5, está en contacto con agua según se indica en la figura. Calcular el ángulo de incidencia máximo con que un rayo luminoso debe llegar a la cara AB del paralelepípedo para que después se refleje totalmente sobre la cara BC en contacto con el agua. Indice de refracción del agua:

Problema de Reflexión y Refracción de Ondas.

Una experiencia consiste en una fuente S y un detector D separados una distancia de 600 m, equidistantes de un eje transversal AO. La fuente S emite ondas sonoras (v=340 m/s) de frecuencia ν=100 Hz. a) En una primera parte de la experiencia, las ondas que salen de S llegan a D por dos caminos diferentes: directamente, y después de reflejarse en una pared P. Esta se sitúa primero en una posición P1 y después en una posición diferente P2, para las cuales se obtiene en D respectivas situaciones de mínimo de intensidad, habiéndose observado además entre ambas posiciones 100 situaciones de máximo de intensidad. Si la distancia entre la pared en la posición P1 y la recta SD es de 361.8 m, ¿cuál es el espacio entre las posiciones P1 y P2 de la pared? b) En una segunda parte de la experiencia se elimina la onda directa que llega al detector, colocando un obstáculo en el camino SD, de forma que a D sólo llegan ondas después de rebotar en la pared P. Se quiere además que la pared alcance diferentes posiciones, para lo cual se da a la pared un movimiento uniformemente acelerado con a=2 m/s2. En estas condiciones, en una posición P1 de la pared se obtiene en D una frecuencia de ν´=92.3 Hz. Calcular la frecuencia ν1 percibida por el observador O colocado en el centro de la pared en esta posición P1. Si para una posición P2 se tiene que P1P2=100 m, calcular la frecuencia ν2 observada por O en la nueva posición P2.

Problema de Interferencias.

Para reducir la reflexión en la superficie del cristal, las lentes van, a menudo, recubiertas de películas delgadas de sustancias transparentes como F2Mg (n=1.38). ¿De qué espesor debe ser esta película para producir una reflexión mínima en el centro del espectro visible 550 nm? ncristal=1.5.

Problema de Interferencias.

Paginación de entradas

Anteriores 1 … 8 9 10 … 71 Siguientes
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo