Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Gravitación

El módulo de aterrizaje lunar pesa 15876 kp, tiene su centro de masa en G y un radio de giro de 1.8 m respecto de G. Se ha proyectado para tomar contacto con la superficie lunar con una velocidad de caída libre vertical de 8 km/h. Si una de las cuatro patas toca la superficie lunar sobre una pequeña inclinación sin sufrir rebote, calcular la velocidad angular ω del módulo inmediatamente después del impacto como si pivotase alrededor del punto de contacto. La dimensión 9 m es la longitud de la diagonal del cuadrado formado por los cuatro pies como vértices.

Problema de Gravitación.

Un cohete se observa desde la Tierra a 14000 km del centro de ésta, con una velocidad de 28000 km/h. El ángulo entre los vectores posición (medido desde el centro de la Tierra) y velocidad es de 41o. a) Determinar el tipo de órbita que describe el cohete, su energía total y su momento angular. En su recorrido posterior y a una distancia de 10000 km del centro de la Tierra se quiere que pase a una órbita elíptica en torno a la misma. Para ello se encienden los motores de forma que su velocidad pasa a ser 16000 km/h y se inclina la nave de forma que en dicha posición el ángulo entre los vectores posición (medido respecto a la Tierra) y velocidad es de 28o. Determinar: b) el incremento de velocidad que ha sido necesario comunicar a la nave en dicho punto; c)la velocidad de la nave en el perigeo y apogeo de la nueva órbital; d) el semieje mayor y la ecuación de la misma: e) el ángulo al que se produciría el choque del cohete con la Tierra si continuase en dicha órbita.

Problema de Gravitación. Aparece en la convocatoria de FEB2003.

Calcular la expresión de la verdadera velocidad v que alcanza a la altura h un cuerpo lanzado verticalmente hacia arriba con una velocidad v0 en la superficie terrestre. Comparar esta velocidad con la velocidad v´ obtenida cuando suponemos que la gravedad permanece constante e igual a su valor en la superficie terrestre. Hallar la velocidad mínima en el lanzamiento necesaria para que el objeto nunca vuelva.

Problema de Gravitación.

Un vehículo espacial que se mueve en una órbita circular de radio r1 cambia a otra órbita circular de radio mayor r2 mediante un tramo elíptico desde A hasta B (ésta trayectoria de cambio se conoce como elipse de cambio de Hohmann). El salto se realiza mediante un incremento brusco de celeridad ΔvA en A y un segundo incremento ΔvB en B. Escríbanse las expresiones de ΔvA y ΔvB en función de los radios indicados y del valor g de la gravedad en la superficie terrestre. Si ambos Δv son positivos, ¿cómo puede suceder que la celeridad en la órbita 2 sea menor que en la 1? Calcular el valor numérico de cada incremento de velocidad si r1=6700 km y r2=7020 km.

Problema de Gravitación.

Un satélite de comunicaciones S de 200 kg de masa sigue una órbita circular en torno a la Tierra, en sentido antihorario y a una altura de 200 km sobre la superficie de la misma. Determinar: a) su velocidad; b) el tiempo que tarda en recorrer dicha órbita completa; c) la energía mínima para mantenerlo en órbita; d) para reparar una avería en una de sus antenas se envía desde tierra un vehículo espacial que una vez que ha alcanzado una altura de 100 km y apaga sus motores tiene una velocidad vA=7882.9 m/s en una dirección tal que forma con la vertical un ángulo φ, siguiendo desde ese instante una trayectoria elíptica de aproximación, que llega a ser tangente en B (punto de encuentro) a la trayectoria del satélite. Determinar dicho ángulo φ; e) determinar también el ángulo θ que define la posición del punto A en la órbita elíptica.

Problema de Gravitación. Aparece en la convocatoria de JUN1997.

Si la masa de un satélite se duplica el radio de su órbita permanecerá constante si la velocidad del satélite: a) se duplica; b) se divide por dos; c) permanece constante; d) aumenta un factor ocho; e) se reduce a la octava parte. Justificar la respuesta.

Cuestion de Gravitación.

Se pretende transportar material de reparación desde la Tierra a una estación espacial que está describiendo una órbita circular a 600 km sobre la superficie de la Tierra. Para ello se utiliza una lanzadera que describirá la órbita elíptica de aproximación que aparece en la figura (de la que se dibuja el tramo BA). La lanzadera asciende 60 km desde la superficie de la Tierra, apaga los motores en el punto B y con la velocidad vB (de la que se sabe forma 60o con su radio vector como indica el dibujo) entra en la órbita elíptica, realizándose el acoplamiento de la lanzadera y la estación espacial en el punto A, donde ambas órbitas son tangentes. Determinar: a) la velocidad y el periodo en la órbita de la estación espacial; b) la velocidad vB de la lanzadera; c) el incremento de velocidad de la lanzadera en el punto A para que tenga lugar el acoplamiento; d) el ángulo β que define la posición de la estación espacial en el instante en que la lanzadera está en B, sabiendo que la lanzadera tarda 20 minutos en llegar al punto de encuentro A; e) después de cumplir su misión, la lanzadera vuelve a la tierra. Calcular la disminución de velocidad de la lanzadera en el punto D (apogeo de la órbita elíptica de regreso, señalada en la figura, tramo DC) para que aterrice siguiendo esa órbita en el punto C.
Datos: RTierra=6370 km; MTierra=6·1024 kg; G=6.67·10-11 Nm2/kg2.

Problema de Gravitación. Aparece en la convocatoria de FEB2004.

Suponer que se realiza un aterrizaje en un planeta de otro sistema solar que tiene la misma masa por unidad de volumen que la Tierra, pero su radio es 10 veces el de la Tierra. ¿Cuál sería tu peso en ese planeta comparado con el que tienes en la Tierra?

Problema de Gravitación.

El programa de un vuelo no tripulado para explorar el planeta Marte establece que el vehículo de regreso a la Tierra describirá en primer lugar una órbita circular alrededor del planeta. Al pasar por el punto A será transferido a una órbita elíptica de transición encendiendo sus motores para aumentar su velocidad en ΔvA. Cuando pase por el punto B, el vehículo volverá a ser transferido a una segunda órbita de transición, disminuyendo la velocidad en ΔvB. Finalmente, al pasar el vehículo por el punto C se aumentará su velocidad en ΔvC para situarlo en la trayectoria parabólica de retorno. Sabiendo que el radio del planeta Marte es R=3400 km, que su masa es 0.108 veces la masa de la Tierra y que las alturas de los puntos A, B y C son dA=2500 km, dB=90000 km y dC=1000 km respectivamente, determinar: a) el aumento de velocidad ΔvA que es necesario proporcionar al vehículo en el punto A para transferirlo a la primera órbita de transición; b) la variación de velocidad ΔvB que es necesario proporcionar al vehículo en el punto B para transferirlo a la segunda órbita de transición; c) el aumento mínimo de velocidad ΔvC que es preciso proporcionar al vehículo en el punto C para situarlo en una trayectoria de escape; d) el tiempo empleado por el vehículo para recorrer la primera órbita de transición entre los puntos A y B.

Problema de Gravitación.

Con el fin de reparar los paneles solares de un satélite terrestre, de comunicaciones, situado en una órbita geosíncrona (es decir permanece fijo respecto al suelo terrestre) se envía a unos técnicos en un vehículo espacial. Sabiendo que dicho vehículo describe inicialmente una órbita circular, coplanaria y en el mismo sentido que el satélite a 650 km sobre la superficie de la tierra, antes de pasar a la órbita elíptica de transición que le lleve hasta el satélite (ver figura). Determinar. a) El radio R de la órbita que describe el satélite así como su velocidad. b) El incremento de velocidad que deben de proporcionar los motores al vehículo en el punto A para transferirlo a la órbita elíptica de transición, así como el incremento de velocidad en B para acoplarse al satélite. c) El ángulo θ que define la posición del satélite, respecto al punto de encuentro, en el momento que el vehículo pasa a la trayectoria de transición .Masa de la tierra 6·1024 kg ; radio de la tierra 6370 km; constante de Gravitación universal G= 6.67·10-11 N·m2/kg2.

Problema de Gravitación.

Paginación de entradas

Anteriores 1 … 4 5 6 7 Siguientes
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo