En una frutería, el plato de una balanza cuelga verticalmente de un muelle de forma que cuando está solo el plato de masa 200 g, la elongación respecto de la longitud natural es de 1 cm. De pronto, el frutero suelta 1 kg de plátanos en el plato. Despreciando el rozamiento: a) ¿cuál es la amplitud de las oscilaciones resultantes? b) ¿cuál es la velocidad máxima de los plátanos? c) ¿cuánto vale la fuerza que ejerce el plato sobre los plátanos en los dos extremos de la oscilación (en el más alto y en el más bajo; d) supón que, estando en el punto más bajo de sus oscilaciones, uno de los plátanos (de 100 g de masa), cae del plato. ¿Cuál es la amplitud de las oscilaciones que hace el plato con el resto de los plátanos a partir de ese momento? Problema de Física I. Aparece en la convocatoria de FEB2021.
a) Explica brevemente el movimiento oscilatorio amortiguado y los tres tipos que hay. b) Un bloque de 4 kg está unido a un resorte de constante k=540 N/m. Si el bloque está sumergido en un fluido que proporciona una fuerza de rozamiento fr=-10v (N), siendo v la velocidad en m/s, calcula en qué porcentaje se ha reducido la amplitud al cabo de tres oscilaciones. Cuestion de Movimiento Oscilatorio.
a) Explica la representación de Fresnel del movimiento armónico simple. b) Una partícula recorre 8 cm de extremo a extremo en un movimiento armónico simple cuya aceleración máxima es 48 m/s2. Determina la velocidad máxima de la partícula. Cuestion de Movimiento Oscilatorio.
Un oscilador armónico simple tiene una masa m=0,5 kg y una constante elástica k=18 N/m. En el instante t=0 su elongación es x=0,08 m y se mueve en el sentido positivo del eje X con una energía cinética EC=0,25 J. a) Determinar la ecuación del movimiento del oscilador; b) calcular el tiempo transcurrido hasta que su energía potencial se hace máxima por primera vez; c) a continuación se introduce el oscilador en un fluido donde el parámetro de amortiguamiento es el 2% del correspondiente a un oscilador críticamente amortiguado. Hallar la amplitud del oscilador cuando ha realizado 4 oscilaciones sumergido en el fluido; d) hallar la energía perdida por el oscilador en ese tiempo. Problema de Movimiento Oscilatorio. Aparece en la convocatoria de ENE2022.
En el extremo libre de un muelle se sujeta una pequeña copa semiesférica de masa M1 como se indica en la figura, y se introduce una bolita de masa M2 en la misma, comprimiendo el muelle una cantidad Δx respecto a su posición de equilibrio. A continuación se suelta la copa. a) ¿Cuánto tiempo transcurre antes de que empiecen a separarse la bola y la copa? b) ¿Cuál es la energía de la bola en ese instante? c) ¿Cuál es la ecuación correspondiente a la posición del sistema muelle-copa en el momento posterior a la separación? Problema de Movimiento Oscilatorio.
Dos resortes R1 y R2 de longitud natural 0.2 m y de constantes recuperadoras k1=1 N/m y k2=3 N/m respectivamente, están enganchados por uno de sus extremos a un bloque que puede desplazarse sin rozamiento sobre una superficie horizontal. Los otros extremos de los resortes se unen a dos postes fijos situados a 0.1 m de los extremos de los resortes, tal como se indica en la figura. a) Encontrar la posición de equilibrio del bloque cuando se hayan sujetado los resortes a los postes fijos; b) demostrar que la constante del conjunto de ambos resortes vale 4 N/m; c) si desplazamos ligeramente el bloque de la posición de equilibrio y lo dejamos oscilar, ¿cuál sería el período de dicha oscilación si la masa del bloque es de 0.1 kg? Problema de Movimiento Oscilatorio.
En el esquema de la figura se representa un resorte, en el interior de un tubo de paredes lisas, con uno de los extremos unido al extremo O del tubo y el otro a una masa m=100 g, que puede deslizar dentro del tubo. La constante elástica del resorte k=20 N/m, su longitud es de 10 cm y su masa despreciable. Hacemos girar el tubo, que está en un plano horizontal (XY), en torno a un eje perpendicular que pasa por O con velocidad angular constante ω=3 rad/s en sentido antihorario. a) Calcular la deformación del resorte. b) Si desplazamos la masa desde la posición del apartado a) determinar la frecuencia angular de la oscilación resultante. c) Si el desplazamiento del apartado b) se realiza cuando el tubo pasa por la posición del eje X y es de 3cm determinar la posición de la masa cuando el tubo coincide con la dirección del eje Y. Problema de Movimiento Oscilatorio.
La plataforma A de 50 kg está unida a los muelles B y D, de constante k=1900 N/m cada uno. Se desea que la frecuencia de vibración de la plataforma no varíe cuando sobre ella se deposite un bloque de 40 kg, por lo que se añade un tercer muelle C. a) Hallar la constante de éste tercer muelle; b) el sistema completo (tres muelles, plataforma y bloque) oscila con una amplitud de 25 cm. Determina la ecuación del movimiento si consideramos que en el inicio de tiempos la velocidad es de 1.5 m/s; c) calcula la velocidad y aceleración máximas; d) a continuación se ejerce sobre el sistema una fuerza de rozamiento proporcional a la velocidad, siendo la constante de proporcionalidad 50 Ns/m. Determina el número de oscilaciones que tienen que pasar para que el sistema se considere parado, si suponemos que la oscilación inicial es de 25 cm de amplitud y lo podemos considerar en reposo cuando la amplitud de las oscilaciones es inferior a 1 mm; e) calcula en este caso la ecuación del movimiento, considerando que la amplitud inicial es A0=25 cm y que el origen de tiempos comienza cuando la velocidad es nula. Problema de Movimiento Oscilatorio. Aparece en la convocatoria de FEB2012.
a) Escribir la expresión que describe el movimiento armónico simple, definiendo los parámetros que aparezcan, así como el periodo y la frecuencia y la relación entre todos ellos. b) Escribir la segunda ecuación de Newton para el movimiento amortiguado y su solución matemática. Discutir los tipos de amortiguamientos describiendo los parámetros que lo caracterizan. c) Discutir las expresiones de las frecuencias angulares en cada tipo de movimiento. Cuestion de Movimiento Oscilatorio.
Dibuje las curvas en función del tiempo de la elongación, velocidad, aceleración, energía cinética, energía potencial y energía total en un M.A.S. Cuestion de Movimiento Oscilatorio.