Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Movimiento Oscilatorio

Una canica de masa m=50 g resbala sin rozamiento en el fondo de un cuenco semiesférico de radio R=20 cm. En el instante t=0 se suelta la canica partiendo del reposo desde un ángulo θ=0.1 rad (ver figura). Admitiendo que se mueve en un plano vertical que pasa por el fondo del cuenco: a) deducir la ecuación que describe el movimiento de la canica; b) calcular la frecuencia de las oscilaciones; c) ¿cuál es la energía total del sistema? d) ¿cuál es la velocidad de la canica cuando t=0.1 s? e) ¿cuál es su aceleración cuando t=0.2 s? f) Consideremos ahora que la canica describa un movimiento circular respecto al eje de simetría del cuenco y a una altura pequeña respecto al fondo. Determinar el tiempo que tarda en recorrer una vuelta.

Problema de Movimiento Oscilatorio.

Un punto material se mueve sometido a dos movimientos vibratorios armónicos simples perpendiculares de ecuaciones:

x=3sen5t

y=4cos5t

Calcular la trayectoria descrita por el punto, el período del movimiento y la velocidad en el instante t=0.

Problema de Movimiento Oscilatorio.

Un oscilador amortiguado está caracterizado por su masa m=10 g, su constante elástica k=0.360 N/m y su constante de amortiguamiento γ=40 g/s. Se le aplica al oscilador una fuerza impulsora de frecuencia angular 15 rad/s y de 4·10-3 N de amplitud. a) Determinar el tipo de amortiguamiento; b) calcular la impedancia del oscilador a la frecuencia impuesta y el desfase angular entre la velocidad y la fuerza aplicada; c) calcular la «amplitud» de la velocidad; d) calcular la amplitud de la elongación; e) dibujar los esquemas fasoriales convenientes.

Problema de Movimiento Oscilatorio.

El período de vibración del sistema mostrado en la figura es de 0.8 s (los dos resortes son iguales). Si se retira el bloque A, el nuevo período resultante es de 0.7 s. Calcular: a) la masa del bloque C; b) la constante de recuperación de los dos resortes; c) el período de vibración del sistema si se retiran los bloques A y B; d) a continuación el sistema (sólo con el bloque C) se amortigua con una fuerza proporcional a la velocidad, cuya constante de amortiguamiento es de 1.814 Ns/m. Determinar el tiempo que tarda el sistema en detenerse, considerando el bloque detenido cuando la amplitud de las oscilaciones es la milésima parte de su valor inicial.

Problema de Movimiento Oscilatorio. Aparece en la convocatoria de FEB2010.

Una masa m2=20 g está situada sobre otra m1=18 g, la cual está sujeta a un resorte con k=10 N/m. El coeficiente de rozamiento estático entre las masas es 0,6. Las masas están oscilando sobre una superficie sin fricción. a) ¿Cuál es la amplitud máxima que puede tener la oscilación sin que m2 deslice sobre m1? b) En estas condiciones, el sistema se introduce en un medio viscoso que da lugar a una fuerza de rozamiento proporcional a la velocidad, siendo la constante de proporcionalidad de 1 Ns/m. Justificar el tipo de amortiguamiento que se produce; c) escribir la ecuación correspondiente suponiendo que se empieza a contar el tiempo (t=0) para la amplitud inicial máxima y velocidad nula; d) ¿qué tiempo tiene que transcurrir para que la amplitud se reduzca un 99,9%?

Problema de Movimiento Oscilatorio. Aparece en la convocatoria de DIC2018.

Se tiene un resorte de longitud prácticamente nula cuando está descargado y cuya constante elástica es 80 N/m. Se estira lentamente bajo la acción de una masa de 5 kg, sometida a la acción de la gravedad (g=9.8 m/s2). Hallar: a) longitud en el equilibrio del resorte estirado por el peso de dicha masa; b) si en estas condiciones se hace oscilar la masa verticalmente, calcular la frecuencia angular y la frecuencia de las oscilaciones del movimiento; c) se desplaza la masa 1 cm por debajo de su posición de equilibrio y se le imprime una velocidad inicial hacia abajo de 2 cm/s. Calcular la energía total del movimiento armónico; d) calcular la amplitud del movimiento en cm y la velocidad máxima en cm/s; e) calcular la máxima fuerza restauradora y la aceleración máxima del movimiento en cm/s2. f) Suponiendo que el sistema es disipativo, se observa que la amplitud de oscilación al cabo de 1 minuto es de 1 cm. Calcular el parámetro de amortiguamiento; g) calcular el tanto por uno de la energía total que el sistema pierde en cada oscilación; h) suponiendo que el sistema se considera detenido cuando su amplitud es menor de 1 mm, ¿cuántos minutos tardará en detenerse?

Problema de Movimiento Oscilatorio. Aparece en la convocatoria de JUL2003.

En el extremo libre de un muelle se sujeta una pequeña copa semiesférica de masa M1 como se indica en la figura, y se introduce una bolita de masa M2 en la misma, comprimiendo el muelle una cantidad Δx respecto a su posición de equilibrio. A continuación se suelta la copa. a) ¿Cuánto tiempo transcurre antes de que empiecen a separarse la bola y la copa? b) ¿Cuál es la energía de la bola en ese instante? c) ¿Cuál es la ecuación correspondiente a la posición del sistema muelle-copa en el momento posterior a la separación?

Problema de Movimiento Oscilatorio.

Dos resortes R1 y R2 de longitud natural 0.2 m y de constantes recuperadoras k1=1 N/m y k2=3 N/m respectivamente, están enganchados por uno de sus extremos a un bloque que puede desplazarse sin rozamiento sobre una superficie horizontal. Los otros extremos de los resortes se unen a dos postes fijos situados a 0.1 m de los extremos de los resortes, tal como se indica en la figura. a) Encontrar la posición de equilibrio del bloque cuando se hayan sujetado los resortes a los postes fijos; b) demostrar que la constante del conjunto de ambos resortes vale 4 N/m; c) si desplazamos ligeramente el bloque de la posición de equilibrio y lo dejamos oscilar, ¿cuál sería el período de dicha oscilación si la masa del bloque es de 0.1 kg?

Problema de Movimiento Oscilatorio.

En el esquema de la figura se representa un resorte, en el interior de un tubo de paredes lisas, con uno de los extremos unido al extremo O del tubo y el otro a una masa m=100 g, que puede deslizar dentro del tubo. La constante elástica del resorte k=20 N/m, su longitud es de 10 cm y su masa despreciable. Hacemos girar el tubo, que está en un plano horizontal (XY), en torno a un eje perpendicular que pasa por O con velocidad angular constante ω=3 rad/s en sentido antihorario.
a) Calcular la deformación del resorte. b) Si desplazamos la masa desde la posición del apartado a) determinar la frecuencia angular de la oscilación resultante. c) Si el desplazamiento del apartado b) se realiza cuando el tubo pasa por la posición del eje X y es de 3cm determinar la posición de la masa cuando el tubo coincide con la dirección del eje Y.

Problema de Movimiento Oscilatorio.

La plataforma A de 50 kg está unida a los muelles B y D, de constante k=1900 N/m cada uno.
Se desea que la frecuencia de vibración de la plataforma no varíe cuando sobre ella se deposite un bloque de 40 kg, por lo que se añade un tercer muelle C. a) Hallar la constante de éste tercer muelle; b) el sistema completo (tres muelles, plataforma y bloque) oscila con una amplitud de 25 cm. Determina la ecuación del movimiento si consideramos que en el inicio de tiempos la velocidad es de 1.5 m/s; c) calcula la velocidad y aceleración máximas; d) a continuación se ejerce sobre el sistema una fuerza de rozamiento proporcional a la velocidad, siendo la constante de proporcionalidad 50 Ns/m. Determina el número de oscilaciones que tienen que pasar para que el sistema se considere parado, si suponemos que la oscilación inicial es de 25 cm de amplitud y lo podemos considerar en reposo cuando la amplitud de las oscilaciones es inferior a 1 mm; e) calcula en este caso la ecuación del movimiento, considerando que la amplitud inicial es A0=25 cm y que el origen de tiempos comienza cuando la velocidad es nula.

Problema de Movimiento Oscilatorio. Aparece en la convocatoria de FEB2012.

Paginación de entradas

Anteriores 1 2 3 4 … 11 Siguientes
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo