Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Física I

Determinar el sentido del movimiento del sistema de la figura y plantear las ecuaciones del movimiento. La polea tiene un radio r y un momento de inercia con respecto al eje de rotación I. El coeficiente de rozamiento en el plano inclinado es μ=0.2 y la relación de masas .

Cuestion de Dinámica de la Partícula.

La barra de transmisión AC gira con una velocidad angular constante ω=10 rad/s alrededor de un eje vertical fijo que pasa por su centro O. Las barras uniformes AB y CD pesan cada una 3.6 kg y se mantienen en la configuración mostrada mediante una cuerda que permanece perpendicular a la barra giratoria AC. Calcular la tensión T en BO y DO.

Problema de Dinámica del Sólido Rígido.

El cilindro circular macizo de masa m y radio r está en reposo sobre una superficie horizontal a la que se comunica una aceleración constante a hacia la derecha partiendo del reposo. Determinar el trabajo hecho sobre el cilindro durante el intervalo en el que gira 360o. El cilindro rueda sin deslizar.

Problema de Dinámica del Sólido Rígido.

El movimiento unidimensional de una partícula viene representado en la figura. a) ¿Cuál es la aceleración en los intervalos AB, BC, y CE? b) ¿A qué distancia del punto de partida se encuentra la partícula al cabo de 10 s? c) Representar el desplazamiento de la partícula en función del tiempo; indicar en ella los instantes A, B, C, D y E; d) ¿en qué instante la partícula se mueve más lentamente?

Cuestion de Cinemática de la Partícula.

Un satélite recorre una órbita circular situada 10000 km por encima de la superficie terrestre. En el punto A se reduce su velocidad para situar al satélite en una órbita elíptica de transición cuya altitud mínima es de 5000 km en el punto B. En el punto B se vuelve a reducir la velocidad del satélite para introducirlo en una trayectoria circular. Por último, tras dar una vuelta completa y pasar de nuevo por el punto B se reduce la velocidad nuevamente para insertar el vehículo en una trayectoria elíptica de aterrizaje cuyo apogeo es el punto B. Determinar: a) la disminución de velocidad ΔvA que hay que proporcionar al vehículo en el punto A para pasar de la órbita circular grande a la elíptica de transición; b) el período de la trayectoria elíptica de transición; c) la excentricidad de dicha órbita; d) la disminución de velocidad ΔvB que se debe comunicar al satélite en el punto B para situarlo en la trayectoria circular pequeña; e) si la reducción de velocidad del satélite para la inserción en la trayectoria de aterrizaje es de 2100 m/s, ¿a qué ángulo se producirá éste?
Datos: masa de la Tierra: M=6•1024 kg; radio de la Tierra: R=6370 km; constante de gravitación universal: G=6.67•10-11 Nm2/kg2.

Problema de Gravitación. Aparece en la convocatoria de FEB2008.

El período de vibración del sistema mostrado en la figura es de 0.8 s (los dos resortes son iguales). Si se retira el bloque A, el nuevo período resultante es de 0.7 s. Calcular: a) la masa del bloque C; b) la constante de recuperación de los dos resortes; c) el período de vibración del sistema si se retiran los bloques A y B; d) a continuación el sistema (sólo con el bloque C) se amortigua con una fuerza proporcional a la velocidad, cuya constante de amortiguamiento es de 1.814 Ns/m. Determinar el tiempo que tarda el sistema en detenerse, considerando el bloque detenido cuando la amplitud de las oscilaciones es la milésima parte de su valor inicial.

Problema de Movimiento Oscilatorio. Aparece en la convocatoria de FEB2010.

Demuestre que la cantidad de movimiento de un sólido respecto al centro de masas es nula.

Cuestion de Dinámica del Sólido Rígido.

Un aro y un disco homogéneos, del mismo radio r=0,3 m y de la misma masa m=2 kg llevan enrolladas sendas cuerdas en su periferia. Ambos se sueltan desde el reposo y desde la misma altura al mismo tiempo, a la vez que la cuerda permanece sujeta. Determinar, para cada uno: a) la aceleración del centro de masas; b) la aceleración angular del sólido; c) la tensión en la cuerda; d) la velocidad del centro de masas después de dar una vuelta completa; e) ¿cuál de los dos tardará menos tiempo en descender esa altura?
Momento de inercia de un aro respecto de un eje que pase por su centro: mr2
Momento de inercia de un disco respecto de un eje que pase por su centro: 1/2 mr2

Problema de Dinámica del Sólido Rígido. Aparece en la convocatoria de ENE2014.

Un patinador de 80 kg de masa desciende por una pista helada ABC, alcanzando al finalizar la pista una velocidad v0 que forma un ángulo de 84o con la horizontal. En una competición de salto, debería alcanzar 90 m a lo largo de una pista inclinada 60o respecto de la horizontal. a) ¿Cuál será la velocidad v0 que debe alcanzar al terminar la pista, en el punto C? b) ¿Cuánto tiempo tarda en aterrizar? c) calcular y dibujar las componentes tangencial y normal de la aceleración en el instante t=5 s, contados a partir del despegue de la pista en el punto C, así como el radio de curvatura en ese mismo instante; d) determinar la reacción de contacto con el suelo en el punto más bajo de la pista (punto B) si en dicho punto el radio de curvatura es de 80 m y se encuentra 20 m por debajo del final de la pista. Suponer que el rozamiento tanto con la pista como con el aire es despreciable.

Problema de Dinámica de la Partícula. Aparece en la convocatoria de JUN2015.

Definir la energía potencial de una partícula y en qué condiciones puede ser definida (tipos de fuerzas). A partir de su expresión defina el gradiente y su significado físico.

Cuestion de Trabajo y Energía.

Paginación de entradas

Anteriores 1 … 79 80 81 … 90 Siguientes
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.