Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Entropia y Segundo Principio de la Termodinámica

Una masa de aire de 1 kg se encuentra inicialmente a una temperatura de 15 oC y una presión de 76 cm de Hg. Se le hace describir el siguiente ciclo: 1) compresión adiabática hasta una presión de 30 atm; 2) calentamiento a presión constante suministrando 300 kcal; 3) expansión adiabática hasta llegar al volumen inicial; 4) transformación isócora hasta llegar a las condiciones iniciales. a) Calcular P, V y T al final de cada una de las transformaciones; b) rendimiento del ciclo. Datos: cp=0.25 cal/goC; γ=1.4; 1 atm=101324.72 N/m2; 1 cal=4.18 J; masa de 1 l de aire en condiciones normales: 1.293 g.

Problema de Entropia y Segundo Principio de la Termodinámica.

Un litro de gas helio (γ=1.67) se encuentra a una presión de 16 atm y una temperatura de 327 ºC. Se expansiona isotérmicamente hasta que su volumen es de 4 litros y después se comprime a presión constante hasta que su volumen y temperatura son tales que una compresión adiabática devuelve el gas a su estado inicial. a) Dibujar el ciclo que sigue el gas en un diagrama PV; b) calcular la variación de energía interna en la transformación isobárica; c) calcular el trabajo realizado durante cada ciclo; d) determinar el rendimiento del ciclo.
(1 atm=101324.72 N/m2)

Problema de Entropia y Segundo Principio de la Termodinámica. Aparece en la convocatoria de JUN2007.

Un motor térmico de gas funciona según un ciclo de Carnot, entre dos focos a temperaturas de 200 oC y 50 oC. El diagrama del ciclo se dibuja en una plancha de cobre de ¼ mm de espesor, utilizando una escala de abscisas en la que 1 mm representa una diferencia de volúmenes de 50 cm3, y una escala para ordenadas en la que 1 mm equivale a una diferencia de presiones de 360 g/cm2. Se recorta la lámina de cobre siguiendo el contorno del diagrama y se pesa, dando un peso de 156.2 g. Calcular la cantidad de calor que el motor toma del foco caliente y la que cede al foco frío por cada ciclo. ρCu=8.8 g/cm3.

Problema de Entropia y Segundo Principio de la Termodinámica.

Dos moles de un gas ideal monoatómico inicialmente a 1 atm y 300 K realizan el siguiente ciclo, cuyas etapas son todas reversibles: 1) Compresión isotérmica hasta 2 atm, 2) Aumento isobárico de la T hasta 400K y 3) Retorno al estado inicial por el camino P=a+bT, siendo a y b constantes.
a) Dibuja esquemáticamente el ciclo sobre un diagrama P-T.
b) Calcula P, V y T de cada uno de los estados.
c) Calcula las variaciones numéricas ΔU y ΔS para cada etapa del ciclo.
d) En algún punto del último proceso la presión vale 1.5 atm ¿Cuánto vale entonces la temperatura?
(Cv para un gas ideal monoatómico = 3/2 R).

Problema de Entropia y Segundo Principio de la Termodinámica. Aparece en la convocatoria de JUN2009.

2000 moles de un gas ideal evolucionan según un ciclo de Carnot entre 180 oC y 40 oC. La cantidad de calor absorbida de la fuente caliente es de 40·105 J y la presión máxima alcanzada en el ciclo es de 105 N/m2. Suponiendo que cp=7/2·R calcular: a) el volumen del gas al iniciarse y al finalizar la expansión isotérmica; b) el trabajo realizado por el gas durante la expansión; c) el trabajo realizado sobre el gas durante la compresión.
Tómese 1 atm=101324.72 N/m2; R=2 cal/molK.

Problema de Entropia y Segundo Principio de la Termodinámica.

Una masa de un gas ideal (ϒ=1.4) ocupa 2 l y está sometido a una presión de 1 atm. Su temperatura es de 27 oC (estado 1). Mediante una compresión adiabática se consigue reducir su volumen a la cuarta parte (estado 2). A continuación se produce un calentamiento a presión constante hasta alcanzar un volumen de 1.5 l (estado 3). Mediante una expansión adiabática se llega al volumen inicial (estado 4), para volver, por último, al estado inicial. Sabiendo que para pasar del estado 2 al estado 3 se emplearon 594.5 cal se pide: a) dibujar el ciclo; b) calcular P, T y V en todos los estados; c) calcular el aporte o pérdida de energía que necesita el sistema para pasar del estado 4 al estado inicial; d) rendimiento del ciclo.

Problema de Entropia y Segundo Principio de la Termodinámica. Aparece en la convocatoria de JUN2000.

Se mezclan 200 g de agua a 60 oC con 400 g a 20 oC. Calcular la variación de entropía que ha experimentado el sistema cuando llega al estado de equilibrio. Se supone que el calor específico del agua es igual a la unidad.

Problema de Entropia y Segundo Principio de la Termodinámica.

a) Una olla gruesa de cobre (ccobre=0.093 cal/goC) de 2 kg (incluida su tapa) está a 150oC. Se vierte en ella 0.1 kg de agua (cagua=1 cal/goC, cvapor de agua=0.5 cal/goC) a 25oC y se tapa rápidamente la olla para que no se pueda escapar el vapor (suponer que la presión se mantiene constante e igual a la atmosférica). Calcula la temperatura final de la olla y de su contenido, y determina la fase (líquido o gas) del agua. Supón que no se pierde calor al entorno. Calor latente de vaporización del agua: Lv=538 cal/g. b) A continuación se toman 3 l de vapor de agua a 400 K y 1 atm (cp=8.8 cal/molK, γ=1.294, supóngase que el vapor de agua se comporta como un gas ideal) y se comprimen adiabáticamente de forma reversible hasta que su presión es P2=25 atm. Si la compresión se realiza en dos etapas adiabáticas, también reversiblemente, llevando en la primera etapa adiabáticamente el gas hasta la presión de 5 atm, dejándolo enfriar después a presión constante hasta que su temperatura vuelva a ser la inicial, y en una segunda etapa comprimiéndolo hasta que su presión sea 25 atm, determinar el trabajo necesario para realizar la transformación; c) comparar dicho trabajo con el realizado en una sola transformación adiabática desde 1 atm hasta 25 atm.
R=2 cal/molK=0.082 atml/Kmol=8.31 J/molK; 1 atm=101324.72 N/m2

Problema de Entropia y Segundo Principio de la Termodinámica. Aparece en la convocatoria de SEP2000.

Tres kilogramos de agua a 18 oC se mezclan con nueve a 72 oC. Una vez establecido el equilibrio, se restituyen las dos cantidades de agua a su estado inicial, colocando 3 kg en contacto con una fuente térmica siempre a 18 oC y los 9 kg restantes en otra siempre a 72 oC. Calcular: a) el incremento de la entropía del agua como consecuencia del primer proceso y el incremento de entropía del Universo; b) el incremento de entropía del agua producido por todas las operaciones, y el del Universo; c) el incremento de entropía del agua debido al segundo proceso y el del Universo. Calor específico del agua: 1 cal/goC.

Problema de Entropia y Segundo Principio de la Termodinámica.

Para medir el calor específico del plomo se calientan 600 g de perdigones de este metal a 100 oC y se colocan en un calorímetro de aluminio de 200 g de masa que contiene 500 g de agua inicialmente a 17.3 oC. El calor específico del aluminio del calorímetro es 0.900 kJ/kgK y el del agua 4.18 kJ/kgK. La temperatura final del sistema es de 20 oC. ¿Cuál es el calor específico del plomo?

Cuestion de Entropia y Segundo Principio de la Termodinámica.

Paginación de entradas

1 2 … 4 Siguientes
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo