Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Entropia y Segundo Principio de la Termodinámica

Tres kilogramos de agua a 18 oC se mezclan con nueve a 72 oC. Una vez establecido el equilibrio, se restituyen las dos cantidades de agua a su estado inicial, colocando 3 kg en contacto con una fuente térmica siempre a 18 oC y los 9 kg restantes en otra siempre a 72 oC. Calcular: a) el incremento de la entropía del agua como consecuencia del primer proceso y el incremento de entropía del Universo; b) el incremento de entropía del agua producido por todas las operaciones, y el del Universo; c) el incremento de entropía del agua debido al segundo proceso y el del Universo. Calor específico del agua: 1 cal/goC.

Problema de Entropia y Segundo Principio de la Termodinámica.

Para medir el calor específico del plomo se calientan 600 g de perdigones de este metal a 100 oC y se colocan en un calorímetro de aluminio de 200 g de masa que contiene 500 g de agua inicialmente a 17.3 oC. El calor específico del aluminio del calorímetro es 0.900 kJ/kgK y el del agua 4.18 kJ/kgK. La temperatura final del sistema es de 20 oC. ¿Cuál es el calor específico del plomo?

Cuestion de Entropia y Segundo Principio de la Termodinámica.

Estudiar la variación de entropía del sistema formado por 100 g de hielo fundente, con 200 g de agua a 10 oC cuando se les pone en contacto estando el sistema térmicamente aislado. Calor latente de fusión del hielo: 80 cal/g; calor específico del agua: 1 cal/goC.

Problema de Entropia y Segundo Principio de la Termodinámica.

Un mol de un gas ideal biatómico (ϒ=1.4) que inicialmente está a una presión de 4 atm y a una temperatura de 27 oC, realiza las siguientes transformaciones: 1) se expande isotérmicamente hasta triplicar su volumen; 2) se calienta a volumen constante hasta una presión de 2 atm; 3) se comprime adiabáticamente hasta la presión inicial; y 4) se enfría a presión constante hasta el estado inicial. Determinar: a) presión, volumen y temperatura en todos los estados del gas; b) la variación de energía interna en la última transformación; c) el trabajo realizado por el gas en el ciclo; d) la variación de entropía en la 2º transformación.
Datos: 1 atm=101324.72 N/m2; 1 cal=4.18 J; R=0.082 atml/molK=8.31 J/molK=2 cal/molK

Problema de Entropia y Segundo Principio de la Termodinámica. Aparece en la convocatoria de JUN2003.

Calcular el aumento de la entropía específica del agua cuando se la calienta a la presión atmosférica constante desde -18 oC donde se encuentra en forma de hielo, hasta 150 oC, donde se encuentra en forma de vapor sobrecalentado. Datos: calor específico del hielo: 0.5 cal/goC; calor específico del agua: 1.0 cal/goC; calor específico del vapor: 0.47 cal/goC; calor de fusión del hielo: 80 cal/g; calor de vaporización del agua: 540 cal/g.

Problema de Entropia y Segundo Principio de la Termodinámica.

En la figura está representado en un diagrama P-V el ciclo seguido por un gas. Si la energía interna del gas cuando se lleva de A a C aumenta en 800 J y el trabajo realizado por el gas a lo largo de la trayectoria ABC es de 500 J, a) ¿cuánto calor hay que agregar al gas al ir de A a C a través de B? b) Si la presión en el punto A es 5 veces la presión en el punto C, ¿cuál es el trabajo realizado por el gas al ir de C a D? c) ¿Cuál es el calor intercambiado con los alrededores de C a A? d) Si la energía interna al ir de D hasta A aumenta en 500 J, ¿cuánto calor se debe agregar al gas cuando va de C a D?

Problema de Entropia y Segundo Principio de la Termodinámica. Aparece en la convocatoria de SEP2002.

Un metro cúbico de hidrógeno (H2), que se considera gas perfecto, a 4 atm y 5 oC se calienta por vía reversible a presión constante hasta 255 oC. Calcular el calor que hay que comunicarle, el incremento de su energía interna y el trabajo realizado por el gas. Si partiendo de las condiciones iniciales el hidrógeno se expande reversible e isotérmicamente hasta el mismo volumen que antes, ¿el trabajo realizado por el gas es mayor o menor que el anterior? cp=7 cal/molK; cv=5 cal/molK; R=2 cal/molK; T0=0 oC=273 K.

Problema de Entropia y Segundo Principio de la Termodinámica.

Una masa de 500 g de oxígeno (masa molecular M=32 g/mol), al que se considera gas perfecto, se encuentra en el interior de un cilindro cerrado por un émbolo móvil sin rozamientos, siendo inicialmente su presión de 1 atm y su temperatura de 50 ºC. Se comprime posteriormente el gas isobáricamente hasta que su volumen se reduce a la mitad, sufriendo a continuación una compresión adiabática durante la cual se realiza un trabajo sobre el gas de 10283 J, evolucionando seguidamente a volumen constante, y volviendo al estado inicial mediante una expansión isoterma. Se pide: a) presión, volumen y temperatura en cada uno de los puntos del ciclo; b) dibujar el ciclo; c) variación de energía interna, trabajo, calor y entropía en cada una de las transformaciones y en el ciclo completo; d) rendimiento termodinámico del ciclo; e) rendimiento de un ciclo de Carnot que operase entre las mismas temperaturas extremas.
Datos: constante de los gases perfectos R=0.082 atml/molK=8.32 J/molK=2 cal/molK; 1 cal=4.18 J; 1 atm=101324.72 N/m2.

Problema de Entropia y Segundo Principio de la Termodinámica. Aparece en la convocatoria de JUN2004.

En un recinto a temperatura ambiente de 25 oC se sitúa 1 kg de hielo a -10 oC. El hielo se derrite y alcanza un estado de equilibrio térmico con la atmósfera. Calcular el aumento de entropía del Universo, sabiendo que el calor específico del hielo a presión constante es cp=2.093 kJ/kgoC, que su calor de fusión es L=333.3 kJ/kg y el calor específico del agua c=4.187 kJ/kgoC.

Problema de Entropia y Segundo Principio de la Termodinámica.

Un sistema experimenta las siguientes transformaciones reversibles: 1) de A a B isotérmica a 600 K con absorción de 300 kcal; 2) de B a C adiabática hasta 100 K; 3) de C a D isotérmica a 100 K con absorción de 500 kcal; 4) de D a E adiabática hasta 400 K; 5) de E a F isotérmica a 400 K con cesión de 800 kcal. Se trata de volver al estado inicial cediendo calor solamente por vía isotérmica a 350 K. ¿Cuál es la cantidad de ese calor?

Problema de Entropia y Segundo Principio de la Termodinámica.

Paginación de entradas

1 2 … 4 Siguientes
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo