Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Entropia y Segundo Principio de la Termodinámica

Un cilindro contiene un gas ideal a la presión de 2 atm, siendo el volumen de 5 l a la temperatura de 250 K. El gas se calienta a volumen constante hasta una presión de 4 atm y a continuación a presión constante hasta una temperatura de 650 K. Calcular el calor absorbido por el gas durante estos procesos. Después se enfría el gas a volumen constante hasta que recupera su presión inicial y luego a presión constante hasta volver al estado inicial. Calcular el calor cedido durante el ciclo. Cv=21 J/molK; R=0.082 atml/molK=8.3 J/molK.

Problema de Entropia y Segundo Principio de la Termodinámica.

Demostrar que el rendimiento de una máquina de Carnot depende exclusivamente de las temperaturas de los focos frío y caliente.

Cuestion de Entropia y Segundo Principio de la Termodinámica.

Imagine un filtro de aire especial colocado en la ventana de una casa. El filtro sólo permite la salida de moléculas cuya velocidad sea mayor que un cierto valor y sólo permite la entrada de moléculas cuya rapidez sea menor que ese valor. Explique cómo variaría la temperatura de la casa. ¿Sería compatible ese filtro con la segunda ley de la termodinámica? Justifíquense las respuestas.

Cuestion de Entropia y Segundo Principio de la Termodinámica.

Dos gases diferentes, supuestos perfectos, ocupan recipientes distintos y están a la misma presión y temperatura. Suponiendo constante la temperatura, calcular la variación de entropía del sistema cuando se ponen en comunicación ambos recipientes. Datos: n1=1 mol; n2=3 moles; R=2 cal/molK.

Problema de Entropia y Segundo Principio de la Termodinámica.

Determinar el trabajo realizado en las trayectorias A®B, B®C, C®D y D®A. Calcular el trabajo total realizado al recorrer todo el ciclo. ¿Cuánto valdrá el trabajo total realizado si se recorre el ciclo en sentido contrario?

Cuestion de Entropia y Segundo Principio de la Termodinámica.

Un mol de un gas perfecto, cuyo calor molar a volumen constante es cv=5 cal/molK describe un ciclo de Carnot cuyo rendimiento es 0.5. Sabiendo que la expansión adiabática realiza un trabajo de 8360 J hallar: a) las temperaturas de los focos; b) la relación numérica entre los volúmenes ocupados por el gas al comenzar y finalizar la expansión adiabática. Constante de los gases perfectos: R=2 cal/molK.

Problema de Entropia y Segundo Principio de la Termodinámica.

Enuncie la segunda ley de la termología en sus versiones para máquinas térmicas y frigoríficas. Demuestre que los dos enunciados para máquinas son, en realidad, equivalentes.

Cuestion de Entropia y Segundo Principio de la Termodinámica.

Tomemos un mol de gas diatómico, , que sigue el ciclo de la figura en el sentido:
1— 2— 3 — 1. Calcular: a) T1, T2 y T3; b) ΔU, ΔS, ΔQ y ΔW en cada rama; c) el rendimiento del ciclo. Constante de los gases perfectos: R=2 cal/molK. Tómese 1 atm=101324.72 N/m2.

Problema de Entropia y Segundo Principio de la Termodinámica.

La operación de un motor de gasolina de combustión interna está representada por el ciclo de la figura. Suponiendo que la mezcla de admisión de gasolina y aire se comporta como un gas ideal biatómico, y sabiendo que P1=1atm, V1=2 l y T1=18 oC, determinar: a) la presión y temperatura en cada uno de los estados del ciclo; b) el trabajo realizado por el gas, la variación de energía interna y la variación de entropía del gas en cada una de las trasformaciones; c) el rendimiento del ciclo. (γ=1.4; 1 atm=101324.72 Pa).

Problema de Entropia y Segundo Principio de la Termodinámica. Aparece en la convocatoria de SEP2005.

Un gas perfecto que se encuentra a 27 oC ocupa un volumen de 4.1 l, estando sometido a una presión de 12 atm. A partir de este estado sufre las siguientes transformaciones reversibles: 1) se calienta a volumen constante hasta que la presión se duplica; 2) a continuación se expande isotérmicamente hasta que recupera la presión inicial; 3) finalmente se comprime a presión constante hasta que recupera el estado inicial. Se pide: a) dibujar el proceso en un diagrama P-V; b) calcular los calores y trabajos intercambiados por el gas en cada uno de los procesos, así como la variación de energía interna para cada uno de ellos; c) lo mismo que en b) para todo el ciclo.
Datos: cv=5 cal/mol; R=0.082 atm·l/molK=8.32 J/molK=2 cal/molK; 1 atm=101324.72 N/m2.

Problema de Entropia y Segundo Principio de la Termodinámica.

Paginación de entradas

1 2 … 4 Siguientes
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo