Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Entropia y Segundo Principio de la Termodinámica

Un mol de un gas perfecto, cuyo calor molar a volumen constante es cv=5 cal/molK describe un ciclo de Carnot cuyo rendimiento es 0.5. Sabiendo que la expansión adiabática realiza un trabajo de 8360 J hallar: a) las temperaturas de los focos; b) la relación numérica entre los volúmenes ocupados por el gas al comenzar y finalizar la expansión adiabática. Constante de los gases perfectos: R=2 cal/molK.

Problema de Entropia y Segundo Principio de la Termodinámica.

Enuncie la segunda ley de la termología en sus versiones para máquinas térmicas y frigoríficas. Demuestre que los dos enunciados para máquinas son, en realidad, equivalentes.

Cuestion de Entropia y Segundo Principio de la Termodinámica.

Tomemos un mol de gas diatómico, , que sigue el ciclo de la figura en el sentido:
1— 2— 3 — 1. Calcular: a) T1, T2 y T3; b) ΔU, ΔS, ΔQ y ΔW en cada rama; c) el rendimiento del ciclo. Constante de los gases perfectos: R=2 cal/molK. Tómese 1 atm=101324.72 N/m2.

Problema de Entropia y Segundo Principio de la Termodinámica.

La operación de un motor de gasolina de combustión interna está representada por el ciclo de la figura. Suponiendo que la mezcla de admisión de gasolina y aire se comporta como un gas ideal biatómico, y sabiendo que P1=1atm, V1=2 l y T1=18 oC, determinar: a) la presión y temperatura en cada uno de los estados del ciclo; b) el trabajo realizado por el gas, la variación de energía interna y la variación de entropía del gas en cada una de las trasformaciones; c) el rendimiento del ciclo. (γ=1.4; 1 atm=101324.72 Pa).

Problema de Entropia y Segundo Principio de la Termodinámica. Aparece en la convocatoria de SEP2005.

Un gas perfecto que se encuentra a 27 oC ocupa un volumen de 4.1 l, estando sometido a una presión de 12 atm. A partir de este estado sufre las siguientes transformaciones reversibles: 1) se calienta a volumen constante hasta que la presión se duplica; 2) a continuación se expande isotérmicamente hasta que recupera la presión inicial; 3) finalmente se comprime a presión constante hasta que recupera el estado inicial. Se pide: a) dibujar el proceso en un diagrama P-V; b) calcular los calores y trabajos intercambiados por el gas en cada uno de los procesos, así como la variación de energía interna para cada uno de ellos; c) lo mismo que en b) para todo el ciclo.
Datos: cv=5 cal/mol; R=0.082 atm·l/molK=8.32 J/molK=2 cal/molK; 1 atm=101324.72 N/m2.

Problema de Entropia y Segundo Principio de la Termodinámica.

Dos moles de un gas ideal biatómico (ϒ=1.4) describen el ciclo termodinámico reversible ABCA. En A la presión es de 5 atm y la temperatura de 27 ºC, mediante una expansión isobárica duplica su volumen en B, de B pasa a C mediante una expansión adiabática y después desde C mediante una compresión isotérmica vuelve a A. Calcular: a) el volumen y la temperatura del gas en B y C; b) el trabajo realizado por el gas y la variación de energía interna en las transformaciones AB, BC y CA; c) la variación de entropía en las transformaciones AB, BC y CA; d) el rendimiento del ciclo.
R=0.082 atml/molK; 1 atm=101324.72 N/m2.

Problema de Entropia y Segundo Principio de la Termodinámica. Aparece en la convocatoria de JUN2006.

Una masa de aire de 1 kg se encuentra inicialmente a una temperatura de 15 oC y una presión de 76 cm de Hg. Se le hace describir el siguiente ciclo: 1) compresión adiabática hasta una presión de 30 atm; 2) calentamiento a presión constante suministrando 300 kcal; 3) expansión adiabática hasta llegar al volumen inicial; 4) transformación isócora hasta llegar a las condiciones iniciales. a) Calcular P, V y T al final de cada una de las transformaciones; b) rendimiento del ciclo. Datos: cp=0.25 cal/goC; γ=1.4; 1 atm=101324.72 N/m2; 1 cal=4.18 J; masa de 1 l de aire en condiciones normales: 1.293 g.

Problema de Entropia y Segundo Principio de la Termodinámica.

Un litro de gas helio (γ=1.67) se encuentra a una presión de 16 atm y una temperatura de 327 ºC. Se expansiona isotérmicamente hasta que su volumen es de 4 litros y después se comprime a presión constante hasta que su volumen y temperatura son tales que una compresión adiabática devuelve el gas a su estado inicial. a) Dibujar el ciclo que sigue el gas en un diagrama PV; b) calcular la variación de energía interna en la transformación isobárica; c) calcular el trabajo realizado durante cada ciclo; d) determinar el rendimiento del ciclo.
(1 atm=101324.72 N/m2)

Problema de Entropia y Segundo Principio de la Termodinámica. Aparece en la convocatoria de JUN2007.

Un motor térmico de gas funciona según un ciclo de Carnot, entre dos focos a temperaturas de 200 oC y 50 oC. El diagrama del ciclo se dibuja en una plancha de cobre de ¼ mm de espesor, utilizando una escala de abscisas en la que 1 mm representa una diferencia de volúmenes de 50 cm3, y una escala para ordenadas en la que 1 mm equivale a una diferencia de presiones de 360 g/cm2. Se recorta la lámina de cobre siguiendo el contorno del diagrama y se pesa, dando un peso de 156.2 g. Calcular la cantidad de calor que el motor toma del foco caliente y la que cede al foco frío por cada ciclo. ρCu=8.8 g/cm3.

Problema de Entropia y Segundo Principio de la Termodinámica.

Dos moles de un gas ideal monoatómico inicialmente a 1 atm y 300 K realizan el siguiente ciclo, cuyas etapas son todas reversibles: 1) Compresión isotérmica hasta 2 atm, 2) Aumento isobárico de la T hasta 400K y 3) Retorno al estado inicial por el camino P=a+bT, siendo a y b constantes.
a) Dibuja esquemáticamente el ciclo sobre un diagrama P-T.
b) Calcula P, V y T de cada uno de los estados.
c) Calcula las variaciones numéricas ΔU y ΔS para cada etapa del ciclo.
d) En algún punto del último proceso la presión vale 1.5 atm ¿Cuánto vale entonces la temperatura?
(Cv para un gas ideal monoatómico = 3/2 R).

Problema de Entropia y Segundo Principio de la Termodinámica. Aparece en la convocatoria de JUN2009.

Paginación de entradas

1 2 … 4 Siguientes
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo