Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Entropia y Segundo Principio de la Termodinámica

2000 moles de un gas ideal evolucionan según un ciclo de Carnot entre 180 oC y 40 oC. La cantidad de calor absorbida de la fuente caliente es de 40·105 J y la presión máxima alcanzada en el ciclo es de 105 N/m2. Suponiendo que cp=7/2·R calcular: a) el volumen del gas al iniciarse y al finalizar la expansión isotérmica; b) el trabajo realizado por el gas durante la expansión; c) el trabajo realizado sobre el gas durante la compresión.
Tómese 1 atm=101324.72 N/m2; R=2 cal/molK.

Problema de Entropia y Segundo Principio de la Termodinámica.

Una masa de un gas ideal (ϒ=1.4) ocupa 2 l y está sometido a una presión de 1 atm. Su temperatura es de 27 oC (estado 1). Mediante una compresión adiabática se consigue reducir su volumen a la cuarta parte (estado 2). A continuación se produce un calentamiento a presión constante hasta alcanzar un volumen de 1.5 l (estado 3). Mediante una expansión adiabática se llega al volumen inicial (estado 4), para volver, por último, al estado inicial. Sabiendo que para pasar del estado 2 al estado 3 se emplearon 594.5 cal se pide: a) dibujar el ciclo; b) calcular P, T y V en todos los estados; c) calcular el aporte o pérdida de energía que necesita el sistema para pasar del estado 4 al estado inicial; d) rendimiento del ciclo.

Problema de Entropia y Segundo Principio de la Termodinámica. Aparece en la convocatoria de JUN2000.

Se mezclan 200 g de agua a 60 oC con 400 g a 20 oC. Calcular la variación de entropía que ha experimentado el sistema cuando llega al estado de equilibrio. Se supone que el calor específico del agua es igual a la unidad.

Problema de Entropia y Segundo Principio de la Termodinámica.

a) Una olla gruesa de cobre (ccobre=0.093 cal/goC) de 2 kg (incluida su tapa) está a 150oC. Se vierte en ella 0.1 kg de agua (cagua=1 cal/goC, cvapor de agua=0.5 cal/goC) a 25oC y se tapa rápidamente la olla para que no se pueda escapar el vapor (suponer que la presión se mantiene constante e igual a la atmosférica). Calcula la temperatura final de la olla y de su contenido, y determina la fase (líquido o gas) del agua. Supón que no se pierde calor al entorno. Calor latente de vaporización del agua: Lv=538 cal/g. b) A continuación se toman 3 l de vapor de agua a 400 K y 1 atm (cp=8.8 cal/molK, γ=1.294, supóngase que el vapor de agua se comporta como un gas ideal) y se comprimen adiabáticamente de forma reversible hasta que su presión es P2=25 atm. Si la compresión se realiza en dos etapas adiabáticas, también reversiblemente, llevando en la primera etapa adiabáticamente el gas hasta la presión de 5 atm, dejándolo enfriar después a presión constante hasta que su temperatura vuelva a ser la inicial, y en una segunda etapa comprimiéndolo hasta que su presión sea 25 atm, determinar el trabajo necesario para realizar la transformación; c) comparar dicho trabajo con el realizado en una sola transformación adiabática desde 1 atm hasta 25 atm.
R=2 cal/molK=0.082 atml/Kmol=8.31 J/molK; 1 atm=101324.72 N/m2

Problema de Entropia y Segundo Principio de la Termodinámica. Aparece en la convocatoria de SEP2000.

Tres kilogramos de agua a 18 oC se mezclan con nueve a 72 oC. Una vez establecido el equilibrio, se restituyen las dos cantidades de agua a su estado inicial, colocando 3 kg en contacto con una fuente térmica siempre a 18 oC y los 9 kg restantes en otra siempre a 72 oC. Calcular: a) el incremento de la entropía del agua como consecuencia del primer proceso y el incremento de entropía del Universo; b) el incremento de entropía del agua producido por todas las operaciones, y el del Universo; c) el incremento de entropía del agua debido al segundo proceso y el del Universo. Calor específico del agua: 1 cal/goC.

Problema de Entropia y Segundo Principio de la Termodinámica.

Para medir el calor específico del plomo se calientan 600 g de perdigones de este metal a 100 oC y se colocan en un calorímetro de aluminio de 200 g de masa que contiene 500 g de agua inicialmente a 17.3 oC. El calor específico del aluminio del calorímetro es 0.900 kJ/kgK y el del agua 4.18 kJ/kgK. La temperatura final del sistema es de 20 oC. ¿Cuál es el calor específico del plomo?

Cuestion de Entropia y Segundo Principio de la Termodinámica.

Paginación de entradas

Anteriores 1 … 3 4
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo