Dos tubos sonoros abiertos por un extremo de 1 m de longitud cada uno están llenos el primero de O2 y el segundo de N2 ambos en condiciones normales. Se desea saber: a) la frecuencia de las pulsaciones que se producen al hacer vibrar ambos tubos simultáneamente con el tono fundamental; b) la temperatura que debe de tener el tubo de N2 para que vibre con la misma frecuencia que el otro tubo. Coeficiente adiabático del oxígeno y del nitrógeno: 1.4 Masa molecular del oxígeno: 32 g/mol; masa molecular del nitrógeno: 28 g/mol. Problema de Interferencias.
a) Roger Rabitt pasea en su auto a 20 m/s por una calle de Toontown un viernes por la noche. Por una calle paralela se acerca en sentido contrario Betty Boop a una velocidad de 2 m/s. Las dos calles distan 10 m. El aire sopla en el sentido de avance de Betty a 5 m/s y la temperatura es de 15 oC. Roger silba a Betty con una frecuencia de 500 Hz en el instante en que la recta que los une mide 20 m. ¿Qué frecuencia escucha ella? b) Ambos se detienen y se colocan enfrentados. Si los dos silban con la misma frecuencia (500 Hz) ¿en qué puntos de la calle se producen máximos de interferencia. c) Poco tiempo después, ambos se encuentran en un bar (a la temperatura de 25 oC) tomando una cerveza. Para impresionar a Betty, Roger dispone de un vaso de 30 cm de longitud que hace vibrar con un silbido de 5000 Hz. Roger va llenando el vaso lentamente de cerveza hasta escuchar por primera vez un pitido intenso. ¿Cuál es la altura de cerveza que ha echado? d) ¿De qué armónico se trata? e) ¿Qué altura de cerveza es necesaria para que se produzca el tono fundamental? Velocidad del sonido en el aire en calma a 0 oC: 340 m/s. Problema de Interferencias. Aparece en la convocatoria de SEP1999.
Definir el concepto de puntos nodales, describir cómo se determinan y cuál es su relación con los puntos principales. Cuestion de Interferencias.
En el aparato de la figura, la longitud de cada una de las dos ramas del tubo mide l=10 m y la frecuencia del sonido puro emitido por el diapasón F es ν=500 s-1. Si la temperatura del aire en la rama superior se mantiene constante e igual a 0oC y la del aire en la rama inferior se va elevando progresivamente por encima de dicho valor se pide: a) temperatura del aire en la rama inferior a la que se producirá el primer mínimo de intensidad a la salida O del tubo; b) si se calienta el aire de la rama inferior desde 0o hasta 100oC, determinar el número de máximos y de mínimos que se producirán durante el proceso en la intensidad percibida a la salida O del tubo, así como las temperaturas a las que se producen . Velocidad del sonido en el aire (a 0 oC) v=330 m/s. Problema de Interferencias.
Una película delgada de agua (n=1.33) situada sobre una superficie de vidrio plana (n=1.50) es iluminada por un haz de luz que incide normalmente. La luz del haz es monocromática, pero la longitud de onda puede variarse. Al variar su longitud de onda de forma continua, la intensidad reflejada cambia de un mínimo λ=530 nm a un máximo a λ=795 nm. ¿Cuál es el espesor de la película? Problema de Interferencias.
Un tubo abierto por ambos extremos emite como sonido fundamental el de 435 s-1 de frecuencia cuando se acciona por una corriente de aire. Cuando se acciona con una corriente de CO2 se observa que el sonido fundamental emitido es un poco más grave que el fundamental producido por otro tubo abierto por ambos extremos accionado por aire y cuya longitud es 11 cm mayor, produciéndose por interferencia entre ambos sonidos 120 pulsaciones por minuto. Calcular la velocidad del sonido en el anhídrido carbónico sabiendo que en el aire, en las condiciones de la experiencia, es 340 m/s. Problema de Interferencias.
Demostrar gráficamente que la amplitud resultante de la interferencia de fuentes iguales, puntuales y alineadas es cero para un desfase δ=120o (en el caso de tres fuentes), δ=90o (cuatro fuentes) y δ=72o (cinco fuentes). Deducir una expresión que dé el desfase, para una amplitud cero, en función del número de fuentes. Cuestion de Interferencias.
Explicar la diferencia en la iluminación sobre una pantalla lejana por dos fuentes puntuales, muy próximas situadas a la misma distancia respecto de la pantalla, según sean estas coherentes o incoherentes. Representar el diagrama de intensidades en los dos casos. Cuestion de Interferencias.
¿Cuál es la distancia lineal sobre la pantalla C de la figura entre dos máximos adyacentes? Se utiliza luz monocromática λ=546 nm, la separación d entre las rendijas es 0.1 mm y la separación entre éstas y la pantalla es de 20 cm. Problema de Interferencias.
Una película de aceite de 500 nm de espesor se encuentra en el aire y es iluminada en dirección perpendicular a la película. En el rango de 300-700 nm, ¿qué longitud de onda reflejará fuertemente? Tómese n=1.46 para el aceite. Problema de Interferencias.