Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Física II

Se dispone de un sistema óptico formado por los siguientes elementos: una lente convergente de 12 cm de focal, una primera lente divergente de 24 cm de focal, una segunda lente divergente de 12 cm de focal y un espejo esférico situados en este orden. La lente convergente dista de la primera divergente 36 cm, la distancia entre las dos lentes divergentes es de 44 cm y la distancia entre la segunda lente divergente y el vértice del espejo es de 20 cm. Se coloca un objeto 6 cm a la izquierda de la primera lente.
Determinar el radio del espejo y decir si dicho espejo es cóncavo o convexo si se desea que la imagen final sea virtual y 3.375 veces menor que el objeto.

Problema de Óptica geométrica. Aparece en la convocatoria de JUN2000.

Un mol de un gas ideal biatómico a una presión inicial de 4 atm y una temperatura de 27oC realiza el siguiente ciclo reversible: 1) se expande isotérmicamente hasta que su volumen se duplica; 2) se comprime a presión constante hasta su volumen inicial; 3) se comprime isotérmicamente hasta una presión de 4 atm; 4) se expande a presión constante hasta su volumen inicial. a) Representar una gráfica exacta del proceso en un diagrama PV; b) calcular el trabajo realizado por el gas por ciclo; c) calcular el rendimiento del ciclo; d) comparar dicho rendimiento con el de un ciclo de Carnot que actuara entre las temperaturas de las isotermas anteriores.
Constante de los gases perfectos R=0.082 atm·l/mol·K=2 cal/mol·K; coeficiente adiabático de un gas biatómico γ=1.4.

Problema de Teoría Cinética de los Gases. Aparece en la convocatoria de SEP2001.

Demostrar la relación cp=cv+R para un gas ideal monoatómico. Cómo se modifica esta expresión para un gas ideal diatómico?

Cuestion de Teoría Cinética de los Gases.

Cuando un rayo de luz que forma un ángulo de 45o con la horizontal atraviesa una lámina transparente de caras paralelas y cuyo espesor, e, es de 20 cm, experimenta una desviación de su trayectoria, Δθ de 8.67 cm. Calcular el índice de refracción del material de la lámina.

Problema de Reflexión y Refracción de Ondas.

En un punto P sobre una pantalla se observa un patrón de interferencia que es el resultado de la superposición de un rayo directo que sale de una fuente con longitud de onda 500 nm, con un rayo reflejado en un espejo como se muestra en la figura. Si la fuente se encuentra a 100 mm a la izquierda de la pantalla y 1 cm arriba del espejo, encuentre la distancia y en mm a la primera franja oscura localizada arriba del espejo.

Problema de Interferencias.

Entre una lente plano-convexa y una lámina de vidrio sobre la cual ella fue colocada, no hay contacto por causa del polvo. El radio del quinto anillo oscuro de Newton, por causa de ello es igual a r1=0.08 cm. Si eliminamos el polvo, el radio de este anillo aumenta hasta r2=0.1 cm. Encontrar el espesor de la capa de polvo si el radio de curvatura de la superficie convexa de la lente es R=10 cm. La observación se lleva a cabo por reflexión.

Problema de Interferencias.

Una rendija rectangular, de anchura b muy pequeña comparada con su longitud, se ilumina normalmente a su superficie. Representar gráficamente la distribución de intensidad de las ondas difractadas un ángulo θ respecto de la dirección de incidencia.

Problema de Difracción.

Una lente convexo-plana de 1 cm de grosor tiene la cara convexa en el aire y la plana sumergida en un líquido de índice de refracción 1.3. Se coloca un objeto a 25 cm de la cara de la lente que está en el aire. ¿Dónde estará la imagen?
Radio de la cara convexa: 20 cm; índice de refracción del vidrio: 1.5.

Problema de Óptica geométrica.

Para un observador cuya distancia mínima de visión distinta es de 20 cm, el aumento de un microscopio enfocado al infinito es de 1000. Sabiendo que el ocular tiene una convergencia de 100 dioptrías y que la longitud del microscopio es de 25 cm, calcular la distancia focal del objetivo, la longitud óptica del tubo y la distancia del objeto al objetivo.

Problema de Óptica geométrica.

Una lente biconvexa de radios r1=20 cm y r2=30 cm hueca de paredes delgadas se sumerge en un tanque de agua cuyo índice de refracción es 1.33.
Determinar en esta situación la distancia focal de la lente.

Problema de Óptica geométrica.

Paginación de entradas

Anteriores 1 … 9 10 11 … 31 Siguientes
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo