Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Física II

¿Puede proyectarse una imagen virtual sobre una pantalla? ¿Y observarse directamente con el ojo? Justifíquense las respuestas.

Cuestion de Óptica geométrica.

Un sistema óptico centrado está formado por dos lentes delgadas L1 y L2 y un espejo esférico E, situados en ese orden. La distancia entre las lentes es de 30 cm y la distancia entre la lente L2 y el vértice del espejo es de 20 cm. La lente L1 es plano-cóncava de potencia 5 dioptrías y la lente L2 es plano-convexa de radio 10 cm e índice de refracción 1.5. Se sabe que la imagen dada por el sistema de un objeto situado 20 cm a la izquierda de L1 es real y está situada a 12 cm del espejo. Determinar:
a) El radio de curvatura del espejo ¿Es un espejo cóncavo o convexo?
b) ¿Cuál es el carácter de la imagen?
Después se desplaza la lente L2 y se yuxtapone con la L1 pudiendo hacerse la unión bien por las caras planas o bien por las curvas.
c) ¿Cuál es la potencia de la lente resultante? Si el objeto y el espejo permanecen donde estaban inicialmente.
d) ¿Cuál es el carácter de la nueva imagen?
e) ¿Cambiaría el carácter de la imagen si fuera L1 la que desplazáramos hasta L2? Justificar las respuestas.

Problema de Óptica geométrica. Aparece en la convocatoria de JUL2009.

Una esfera de vidrio de radio 20 cm tiene un índice de refracción de 1.5. Para un observador fuera de la esfera, ¿dónde verá una burbuja que está en el centro de la esfera?

Cuestion de Óptica geométrica.

Un buceador sumergido observa un pájaro en una ramita sobre el agua. El pájaro, según el buceador, ¿parece estar más lejos o más cerca de la superficie de lo que realmente está? Razone la respuesta.

Cuestion de Reflexión y Refracción de Ondas.

Una masa de 500 g de oxígeno (masa molecular M=32 g/mol), al que se considera gas perfecto, se encuentra en el interior de un cilindro cerrado por un émbolo móvil sin rozamientos, siendo inicialmente su presión de 1 atm y su temperatura de 50 ºC. Se comprime posteriormente el gas isobáricamente hasta que su volumen se reduce a la mitad, sufriendo a continuación una compresión adiabática durante la cual se realiza un trabajo sobre el gas de 10283 J, evolucionando seguidamente a volumen constante, y volviendo al estado inicial mediante una expansión isoterma. Se pide: a) presión, volumen y temperatura en cada uno de los puntos del ciclo; b) dibujar el ciclo; c) variación de energía interna, trabajo, calor y entropía en cada una de las transformaciones y en el ciclo completo; d) rendimiento termodinámico del ciclo; e) rendimiento de un ciclo de Carnot que operase entre las mismas temperaturas extremas.
Datos: constante de los gases perfectos R=0.082 atml/molK=8.32 J/molK=2 cal/molK; 1 cal=4.18 J; 1 atm=101324.72 N/m2.

Problema de Entropia y Segundo Principio de la Termodinámica. Aparece en la convocatoria de JUN2004.

Si tapamos la parte superior de la lente de la figura con un trozo de papel ¿Qué sucederá con la imagen del objeto?: a) la mitad inferior desaparece; b) la mitad superior desaparece; c) la imagen se ve más débil; d) no hay cambios; e) desaparece toda la imagen.

Cuestion de Óptica geométrica.

Calcular la velocidad de propagación de la luz en un medio óptico sobre el que incide, con un ángulo de 30o, un rayo luminoso procedente del aire y que se refracta con un ángulo de 15o.

Problema de Reflexión y Refracción de Ondas.

En el punto P se superponen dos movimientos procedentes de dos focos coherentes A y B. La distancia AP es de 35 cm y la BP es de 20 cm. Los puntos P, B y A están alineados y situados en este orden. La velocidad de propagación es de 900 cm/s para ambos focos y la frecuencia es de 150 Hz. En el punto P la amplitud del movimiento que procede de A es 0.4 m y la que procede de B 0.3 m. Calcular: a) la ecuación del movimiento resultante en el punto P; b) la relación de intensidades del movimiento resultante en el punto P con respecto a cada uno de los movimientos incidentes; c) velocidad y aceleración del movimiento resultante a los 5 s de iniciado el movimiento; d) el tiempo transcurrido entre dos valores iguales de la velocidad.

Problema de Interferencias.

Una película de agua (índice de refracción 1.33) en el aire, tiene un espesor de 320 nm. Si se ilumina con luz blanca en incidencia normal, ¿de qué color parecerá ser la luz reflejada? Se supone que las longitudes de onda del espectro visible van desde 390 nm (violeta) hasta 770 nm (rojo).

Problema de Interferencias.

Una lámina de cuarzo se utiliza para controlar la frecuencia de un circuito eléctrico oscilante. Se originan ondas longitudinales estacionarias en la lámina con producción de antinodos en las caras opuestas. La frecuencia fundamental de la vibración está dada por la siguiente ecuación:

donde S es el espesor de la lámina en cm. Calcular el módulo de Young de la lámina, siendo la densidad del cuarzo ρ=2.66 g/cm3.

Problema de Interferencias.

Paginación de entradas

Anteriores 1 … 9 10 11 … 31 Siguientes
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo