Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Física II

Explicar cómo cambiaría la intensidad de la luz sobre una pantalla iluminada por una fuente, cuando: a) se añade otra fuente de las mismas características que emita de forma coherente con la primera; b) la fuente añadida no emite de forma coherente con la primera.

Cuestion de Interferencias.

Verdadero o falso. Si la afirmación es verdadera decir por qué lo es. Si es falsa dar un contraejemplo.
a) Una imagen virtual puede verse sobre una pantalla.
b) Una distancia imagen negativa implica que la imagen es virtual.
c) Una lente divergente no puede formar una imagen real de un objeto real.
d) Una lente biconvexa siempre es convergente.
e) Una lente bicóncava siempre es divergente.

Cuestion de Óptica geométrica.

Tres frecuencias de resonancia sucesivas de un tubo de órgano son 1310, 1834 y 2358 Hz. a) ¿Está el tubo cerrado por un extremo o abierto por ambos extremos? b) ¿Cuál es la frecuencia fundamental? c) ¿Cuál es la longitud del tubo? d) A continuación dos tubos idénticos a los del problema se utilizan como fuentes coherentes emitiendo ambos la frecuencia de 1310 Hz, enfrentados y separados por 1.5 m. ¿En qué posiciones de la recta que une ambos tubos un observador puede escuchar máximos de interferencia? Velocidad del sonido en aire en las condiciones de la experiencia: 340 m/s.

Problema de Interferencias. Aparece en la convocatoria de SEP2005.

Suponga que se desea efectuar el experimento de la doble rendija de Young con las ondas de radio de una estación cuya frecuencia es de 106 Hz. ¿Cuál deberá ser la separación entre las rendijas para que el primer máximo ocurra a un ángulo de 37o respecto del haz no desviado cuando se observa a una gran distancia de las rendijas?

Cuestion de Interferencias.

Se dispone de un sistema óptico formado por los siguientes elementos: una lente convergente de 12 cm de focal, una primera lente divergente de 24 cm de focal, una segunda lente divergente de 12 cm de focal y un espejo esférico situados en este orden. La lente convergente dista de la primera divergente 36 cm, la distancia entre las dos lentes divergentes es de 44 cm y la distancia entre la segunda lente divergente y el vértice del espejo es de 20 cm. Se coloca un objeto 6 cm a la izquierda de la primera lente.
Determinar el radio del espejo y decir si dicho espejo es cóncavo o convexo si se desea que la imagen final sea virtual y 3.375 veces menor que el objeto.

Problema de Óptica geométrica. Aparece en la convocatoria de JUN2000.

Un sistema óptico está formado por una lente biconvexa de 5 dioptrías e índice de refracción 1.6 y una lámina de vidrio de 30 cm de espesor, índice de refracción 1.5 y cuyas caras son la primera convexa (de radio desconocido) y la segunda cóncava de 30 cm de radio. Se coloca un objeto a 40 cm de la lente. a) Determinar el radio de curvatura de la primera cara de la lámina de vidrio para que la imagen final sea invertida, tenga el mismo tamaño que el objeto y se forme justo en la primera cara de la lámina de vidrio. b) ¿Cuál debe ser en este caso la separación entre la lente y la primera cara de la lámina? c) Determina el radio de curvatura de las caras de la lente biconvexa si se sabe que están en relación 1 a 2. d) Se desea que la lente tenga la misma potencia pero distinto carácter. Para ello, se coloca otra lente de índice de refracción 1.4 yuxtapuesta a la biconvexa, de modo que ambas lentes tengan en común uno de los radios. Determina la potencia de esta lente y los radios de curvatura de sus caras.

Problema de Óptica geométrica. Aparece en la convocatoria de JUN2001.

Se dispone de un largo tubo cilíndrico de cartón y dos lentes de longitudes focales 60 y 10 cm que pueden ser ajustadas en dicho tubo. Diseñe con estos elementos un telescopio rudimentario e indique cuáles serían sus características. ¿Podría construirse un microscopio con esos mismos elementos? Justifique la respuesta.

Cuestion de Óptica geométrica.

Cuando un rayo de luz que forma un ángulo de 45o con la horizontal atraviesa una lámina transparente de caras paralelas y cuyo espesor, e, es de 20 cm, experimenta una desviación de su trayectoria, Δθ de 8.67 cm. Calcular el índice de refracción del material de la lámina.

Problema de Reflexión y Refracción de Ondas.

En un punto P sobre una pantalla se observa un patrón de interferencia que es el resultado de la superposición de un rayo directo que sale de una fuente con longitud de onda 500 nm, con un rayo reflejado en un espejo como se muestra en la figura. Si la fuente se encuentra a 100 mm a la izquierda de la pantalla y 1 cm arriba del espejo, encuentre la distancia y en mm a la primera franja oscura localizada arriba del espejo.

Problema de Interferencias.

Entre una lente plano-convexa y una lámina de vidrio sobre la cual ella fue colocada, no hay contacto por causa del polvo. El radio del quinto anillo oscuro de Newton, por causa de ello es igual a r1=0.08 cm. Si eliminamos el polvo, el radio de este anillo aumenta hasta r2=0.1 cm. Encontrar el espesor de la capa de polvo si el radio de curvatura de la superficie convexa de la lente es R=10 cm. La observación se lleva a cabo por reflexión.

Problema de Interferencias.

Paginación de entradas

Anteriores 1 … 24 25 26 … 31 Siguientes
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo