Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Física II

Se mezclan 200 g de agua a 60 oC con 400 g a 20 oC. Calcular la variación de entropía que ha experimentado el sistema cuando llega al estado de equilibrio. Se supone que el calor específico del agua es igual a la unidad.

Problema de Entropia y Segundo Principio de la Termodinámica.

a) Una lente convergente de 12 cm de distancia focal está formada a su vez por dos lentes convergentes convexo-cóncavas yuxtapuestas, de modo que las superficies en contacto tienen el mismo radio. Una de las lentes tiene un índice de refracción de 1.2 y los radios de curvatura de sus caras están en relación 1 a 2; la otra tiene un índice de refracción de 1.4 y los radios de curvatura de sus caras están en la relación 2 a 3. Determinar los radios de curvatura de las caras de dichas lentes. b) Un sistema óptico está formado por dos lentes delgadas convergentes L1 y L2, de 12 cm y 8 cm de focal respectivamente, situadas en este orden sobre un eje óptico, y distantes entre sí 40 cm. Delante de L1 se encuentran dos objetos idénticos verticales, A y B, separados por 4 cm, y distantes A de L1 20 cm (ver figura). Determinar la relación entre los tamaños de las dos imágenes; c) a continuación se desplaza L2 hacia la izquierda hasta quedar en contacto con L1. Encontrar la posición de las nuevas imágenes y su relación de alturas.

Problema de Óptica geométrica. Aparece en la convocatoria de JUN1999.

a) En el fenómeno de la transmisión de ondas, ¿hay cambio de fase? ¿Y en la reflexión? b) ¿A qué se llama ángulo límite?

Cuestion de Reflexión y Refracción de Ondas.

Un litro de gas helio (γ=1.67) se encuentra a una presión de 16 atm y una temperatura de 327 ºC. Se expansiona isotérmicamente hasta que su volumen es de 4 litros y después se comprime a presión constante hasta que su volumen y temperatura son tales que una compresión adiabática devuelve el gas a su estado inicial. a) Dibujar el ciclo que sigue el gas en un diagrama PV; b) calcular la variación de energía interna en la transformación isobárica; c) calcular el trabajo realizado durante cada ciclo; d) determinar el rendimiento del ciclo.
(1 atm=101324.72 N/m2)

Problema de Entropia y Segundo Principio de la Termodinámica. Aparece en la convocatoria de JUN2007.

En el fondo plano de un estanque de profundidad h lleno de agua hay un foco luminoso puntual que ilumina cierta parte del fondo por reflexión total en la superficie. Hallar el radio del círculo en el fondo al que no llegan los rayos reflejados totalmente. Índice de refracción del agua: ni=4/3.

Cuestion de Reflexión y Refracción de Ondas.

¿Con qué otro principio de la física podemos identificar el primer principio de la termología? Razona la respuesta.

Cuestion de Calor y Primer Principio de la Termodinámica.

En un tubo existen las tres frecuencias de resonancia sucesivas de 75, 125 y 175 Hz. a) ¿Corresponde esto a un tubo abierto por un extremo o abierto por ambos extremos? b) ¿Cuál es la frecuencia fundamental? c) ¿Qué armónicos son estas frecuencias de resonancia? d) Un alumno de física anda a lo largo de un vestíbulo grande portando un diapasón que vibra con la frecuencia del décimo armónico proporcionado por el tubo anterior. El extremo del vestíbulo está cerrado, de modo que el sonido se refleja en él. El estudiante oye 4 batidos por segundo. ¿Con qué velocidad está andando? Velocidad del sonido: 340 m/s.

Problema de Interferencias. Aparece en la convocatoria de SEP2001.

Un sistema óptico está formado por dos lentes, L1, biconvexa, de radios iguales, y distancia focal 20 cm, y L2, situada a su derecha, sobre el mismo eje, y a una distancia de 42 cm. Un objeto se encuentra 30 cm a la izquierda de L1. a) Determinar la distancia focal de L2 si la imagen final tiene el mismo tamaño que el objeto y es invertida respecto de él. b) A continuación se elimina la lente L2, y se yuxtapone a L1 otra lente L3 (el objeto se mantiene a 30 cm de las lentes). Calcula la distancia focal de esta nueva lente L3 si la imagen final dada por el sistema es invertida y mide el 80% del objeto. c) La lente L3 es cóncavo-convexa con índice de refracción 1.5 y sus radios están en relación 1 a 2. ¿Cuál es el valor de dichos radios?

Problema de Óptica geométrica. Aparece en la convocatoria de SEP2003.

Un alambre de cobre de 1 mm de diámetro se suelda a otro alambre del mismo material de 0.7 mm de diámetro. Calcular los coeficientes de transmisión y de reflexión en la unión para ondas que se propagan:
a) del primero al segundo alambre; b) del segundo al primer alambre.

Problema de Reflexión y Refracción de Ondas.

Un rayo luminoso que se mueve en el aire incide sobre una lámina plana de vidrio, de caras paralelas, con un ángulo de 60o. La lámina tiene un espesor de 10 cm y su índice de refracción es 1.54. Hallar el desplazamiento que experimenta el rayo al atravesar la lámina.

Problema de Reflexión y Refracción de Ondas.

Paginación de entradas

Anteriores 1 … 25 26 27 … 31 Siguientes
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.