Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Física II

Se dispone de dos lentes delgadas alineadas en un eje óptico y distantes entre sí 40 cm, la primera de ellas está formada por la yuxtaposición de una biconvexa, de radios iguales (r=30 cm) e índice de refracción 1.5 y otra cóncavo-convexa de radios 30 cm y 20 cm respectivamente e índice de refracción 1.4. La segunda lente es una lente convergente de focal 10 cm. Calcular: a) la focal de la primera lente. b) la posición, carácter y tamaño de la imagen de un objeto, inclinado 30o respecto al eje óptico, de 2.31 cm de longitud y cuya base está situada a 90 cm a la izquierda de la primera lente.
Segunda parte: Considérese un sistema óptico centrado formado por dos lentes delgadas separadas una distancia d=9 cm. Un punto O situado a 26 cm a la izquierda del plano principal objeto del sistema óptico compuesto equivalente (S.O.C.) tiene su imagen O´ situada a 16.25 cm a la derecha del plano principal imagen del S.O.C. Se sabe también que la imagen de la primera lente dada por el sistema está situada a 15 cm a la izquierda del plano principal imagen del S.O.C. Calcular: c) las focales f1 y f2 de las lentes y dibújense las posiciones de los planos principales del sistema respecto a las lentes.
(NOTA: distancia focal imagen del S.O.C. ; distancias de las lentes a los planos principales: )

Problema de Óptica geométrica.

600 g de perdigones de plomo se calientan a 100 oC y se colocan en un bote de aluminio de 200 g de masa que contiene 500 g de agua inicialmente a 17.3 oC. El calor específico del aluminio del bote es 0.900 kJ/kgK. La temperatura final del sistema es de 20.0 oC. ¿Cuál es el calor específico del plomo? Calor específico del agua: 4.18 kJ/kgK.

Problema de Calor y Primer Principio de la Termodinámica.

Sabiendo que una onda luminosa se desplaza con una velocidad v1 en el medio 1 y v2 en el medio 2 determinar: a) la relación de frecuencias de la onda en los medios 1 y 2; b) la relación de las direcciones de propagación en los dos medios; c) el ángulo límite en la superficie de separación de ambos medios.

Cuestion de Reflexión y Refracción de Ondas.

Un tanque contiene 2.73 m3 de aire a una presión P1=24.6 atm. El aire se enfría hasta que su presión sea P2=14 atm. Se conoce γ=1.41. ¿Cuál será la disminución de su energía interna? Tómese 1 atm=101324.72 N/m2.

Problema de Teoría Cinética de los Gases.

Tres kilogramos de agua a 18 oC se mezclan con nueve a 72 oC. Una vez establecido el equilibrio, se restituyen las dos cantidades de agua a su estado inicial, colocando 3 kg en contacto con una fuente térmica siempre a 18 oC y los 9 kg restantes en otra siempre a 72 oC. Calcular: a) el incremento de la entropía del agua como consecuencia del primer proceso y el incremento de entropía del Universo; b) el incremento de entropía del agua producido por todas las operaciones, y el del Universo; c) el incremento de entropía del agua debido al segundo proceso y el del Universo. Calor específico del agua: 1 cal/goC.

Problema de Entropia y Segundo Principio de la Termodinámica.

En un ciclo de Diesel el aire se comprime adiabáticamente desde un estado a hasta otro b, se calienta después a presión constante hasta c, se expande adiabáticamente hasta d y por último se enfría a volumen constante hasta a. Considera un ciclo Diesel que se inicia con 0.8 l de aire (γ=1.4) a 300 K y 105 N/m2. Si la temperatura en el punto c es Tc=1100 K y en el paso de a a b el volumen se reduce 20 veces: a) dibuja el ciclo Diesel; b) determina presión, volumen y temperatura en todos los puntos del ciclo; c) calcula la variación de energía interna, de calor y de trabajo en cada rama del ciclo.

Problema de Entropia y Segundo Principio de la Termodinámica. Aparece en la convocatoria de JUN1999.

Demostrar gráficamente que la amplitud resultante de la interferencia de fuentes iguales, puntuales y alineadas es cero para un desfase δ=120o (en el caso de tres fuentes), δ=90o (cuatro fuentes) y δ=72o (cinco fuentes). Deducir una expresión que dé el desfase, para una amplitud cero, en función del número de fuentes.

Cuestion de Interferencias.

Dos barras macizas, una de acero de 2 m de longitud y otra de latón de 1 m de longitud y ambas de 12 cm de diámetro se sueldan seguidas. En los extremos se aplica una fuerza F que hace que el conjunto se estire, consiguiéndose un alargamiento total del conjunto de 10-3 mm. El incremento de volumen de la barra de latón es de 2.25 mm3. En estas condiciones determinar: a) el módulo de Young del latón, así como la fuerza que ha sido necesario aplicar y los esfuerzos en cada barra.
b) El incremento de longitud experimentado por cada barra y el incremento de volumen total del conjunto.
(Datos: Eacero=20·1010 N/m2; μacero=0.28; μlatón=0.37).
c) Considérese estas mismas barras pero ahora huecas, constituyendo así tubos de órgano, la primera cerrada por ambos extremos y conteniendo H2 y la segunda cerrada por un extremo (en unión con el otro tubo) y abierta por el otro, conteniendo He. La temperatura es de 30 ºC. Determinar en estas condiciones la mínima frecuencia para la que se produzcan ondas estacionarias en cada tubo. ¿A qué armónico corresponden estas ondas en cada tubo? d) las posiciones de todos los nodos, tanto en el tubo 1 como en el 2. (Velocidad del sonido a 0 ºC en los dos gases: vH2=1139 m/s; vHe=911.24 m/s).

Problema de Interferencias. Aparece en la convocatoria de SEP2007.

Calcular la relación entre las potencias P1 y P2 de una lente cóncavo-convexa de radios R y R’, respectivamente, según que la luz penetre por la cara cóncava o por la convexa.

Cuestion de Óptica geométrica.

¿Cuánto calor es necesario suministrar para calentar a la presión atmosférica 1 kg de hielo a -20 oC hasta que todo el hielo se convierta en vapor? Calor específico del hielo a presión constante ch=2.05 kJ/kgK; calor específico del agua a presión constante ca=4.18 kJ/kgK; calor latente de fusión del hielo Lf=333.5 kJ/kg; calor latente de vaporización del agua Lv=2257 kJ/kg.

Cuestion de Calor y Primer Principio de la Termodinámica.

Paginación de entradas

Anteriores 1 … 27 28 29 … 31 Siguientes
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo