Demostrar que si la luz pasa de un medio de índice de refracción dado a otro medio de índice de refracción mayor, el rayo se desvía acercándose a la normal, mientras que si la luz pasa de un medio a otro con índice de refracción menor el rayo se aleja de la normal. Problema de Reflexión y Refracción de Ondas.
Dos altavoces A y B radian sonido uniformemente en todas direcciones. La potencia acústica emitida por A es 8·10-4 W y la de B 13.5·10-4 W. Ambos vibran en fase con una frecuencia de 173 Hz; a) determínese la diferencia de fase de las dos señales en el punto C situado en la línea que une A y B a 3 m de B y 4 m de A; b) hállese la intensidad en el punto C del altavoz A si se desconecta el B y la intensidad en C del altavoz B si se apaga el A; c) ¿cuál es la intensidad y el nivel de intensidad o sensación sonora en C cuando funcionan ambos altavoces? Intensidad umbral: I0=10-12 W/m2. Problema de Interferencias.
Cuando el espejo de un interferómetro de Michelson se desplaza una distancia Δl, pasan 140 franjas completas por el detector (una franja completa consisten en un máximo y un mínimo de intensidad). La luz utilizada tiene una longitud de onda de 526.31 nm. Determinar Δl. Problema de Interferencias.
Una persona se encuentra en lo alto de una torre de altura H=300 m. Hacia la base de la misma se acerca un móvil que dista inicialmente D=400 m con una velocidad constante de 108 km/h, emitiendo un sonido de frecuencia ν fija. El aire en que se efectúa la experiencia se encuentra a 17oC, existiendo un viento en el mismo sentido que el movimiento del móvil de 36 km/h de velocidad. Sabiendo que la frecuencia ν emitida por el móvil es 10 veces mayor que la del sonido fundamental producido por un tubo sonoro cerrado por un extremo y abierto por el otro de 2 m de longitud en el que el aire de su interior esté también a 17oC, determinar la frecuencia inicial del sonido percibido por la persona en lo alto de la torre. Velocidad del sonido en el aire a 0oC: 330 m/s. Problema de Interferencias.
Se observa un diagrama de interferencia-difracción de Fraunhofer producido por dos rendijas con luz de 700 nm de longitud de onda. Las rendijas tienen una anchura de 0.01 mm y están separadas por 0.2 mm. ¿Cuántas franjas brillantes se verán en el máximo de difracción central? Problema de Difracción.
Dos lentes delgadas convergentes de distancias focales f1=10 cm y f2=15 cm distan entre sí 5 cm. Hallar la posición de la imagen de un objeto situado a 30 cm de la primera lente mediante los dos métodos siguientes: a) un cálculo lente a lente; b) considerar la lente compuesta como una lente gruesa. Problema de Óptica geométrica.
¿Cuántas veces más lejos habrá que colocar un objeto de una lente de 0.5 dioptrías que de una de 5 dioptrías para que la imagen sea real, invertida y de doble tamaño en ambos casos? Problema de Óptica geométrica.
Las temperaturas más altas y más bajas registradas en los Estados Unidos han sido 134 oF (California 1913) y -80 oF (Alaska, 1971). Expresar estas temperaturas en la escala Celsius Cuestion de Calor y Primer Principio de la Termodinámica.
Uno de los extremos de una barra cilíndrica de aluminio de 2 cm de radio y 60 cm de longitud se mantiene a una temperatura constante de 100 oC y el otro extremo se mantiene a temperatura constante de 0 oC y su superficie se aísla de modo que las pérdidas de calor a lo largo de la barra sean despreciables. Calcular: a) la resistencia térmica de la barra; b) el flujo de energía térmica por conducción ó corriente térmica; c) el gradiente de temperatura y d) la temperatura a 25 cm del extremo caliente . (Conductividad térmica del aluminio: k=237 W/m K). Problema de Calor y Primer Principio de la Termodinámica.
En un recinto vacío de volumen 20 cm3 se introduce 1 mg de gas hidrógeno a 17 oC. A continuación se disminuye la temperatura a 10 oC y se hace un vacío parcial hasta reducir su presión a la centésima parte de su valor inicial. a) ¿Qué valores tenían, en mm de Hg, la presión inicial y final del recinto? b) ¿Qué cantidad de hidrógeno fue extraída del recinto? c) ¿Cuántas moléculas de hidrógeno fueron extraídas? Número de Avogadro: NA=6.023·1023 moléculas/mol. Problema de Teoría Cinética de los Gases.