Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Física II

Por reflexión normal en un obstáculo indeformable de una onda plana armónica y progresiva se producen ondas estacionarias que, prescindiendo de la absorción, vienen dadas por la ecuación:

estando x e y en cm y t en s. Determinar: a) las ondas incidente y reflejada; b) posición y distancia entre nodos; c) posición y distancia entre vientres (antinodos); d) velocidad de una partícula en la posición x=1.5 cm en el instante t=1 s.

Problema de Interferencias.

a) ¿A qué distancia deben estar entre sí dos objetos en la Luna para que puedan ser resueltos por el ojo sin la ayuda de ningún instrumento? Considerar que el diámetro de la pupila del ojo es de 5 mm, la longitud de onda de la luz es 600 nm y la distancia a la Luna es de 380000 km. b) ¿A qué distancia deben estar los objetos en la Luna para que puedan ser resueltos mediante un telescopio que tiene un espejo de 5 m de diámetro?

Problema de Difracción.

Si el humor acuoso del ojo tiene un índice de refracción de 1.34 y la distancia del vértice de la córnea a la retina es de 2.2 cm, ¿cuál es el radio de curvatura de la córnea para el cual los objetos distantes se enfocarán sobre la retina? Supóngase que la refracción se realiza en el humor acuoso.

Problema de Óptica geométrica.

Para la construcción de una lente doble del objetivo de una cámara fotográfica, un constructor utilizó una lente divergente con distancia focal f1=5 cm, colocándola a una distancia l=45 cm de la película. ¿Dónde es preciso colocar la lente convergente con distancia focal f2=8 cm para que en la película resulte una imagen nítida de objetos distantes?

Problema de Óptica geométrica.

Se dispone de dos lentes delgadas alineadas en un eje óptico y distantes entre sí 40 cm, la primera de ellas está formada por la yuxtaposición de una biconvexa, de radios iguales (r=30 cm) e índice de refracción 1.5 y otra cóncavo-convexa de radios 30 cm y 20 cm respectivamente e índice de refracción 1.4. La segunda lente es una lente convergente de focal 10 cm. Calcular: a) la focal de la primera lente. b) la posición, carácter y tamaño de la imagen de un objeto, inclinado 30o respecto al eje óptico, de 2.31 cm de longitud y cuya base está situada a 90 cm a la izquierda de la primera lente.
Segunda parte: Considérese un sistema óptico centrado formado por dos lentes delgadas separadas una distancia d=9 cm. Un punto O situado a 26 cm a la izquierda del plano principal objeto del sistema óptico compuesto equivalente (S.O.C.) tiene su imagen O´ situada a 16.25 cm a la derecha del plano principal imagen del S.O.C. Se sabe también que la imagen de la primera lente dada por el sistema está situada a 15 cm a la izquierda del plano principal imagen del S.O.C. Calcular: c) las focales f1 y f2 de las lentes y dibújense las posiciones de los planos principales del sistema respecto a las lentes.
(NOTA: distancia focal imagen del S.O.C. ; distancias de las lentes a los planos principales: )

Problema de Óptica geométrica.

600 g de perdigones de plomo se calientan a 100 oC y se colocan en un bote de aluminio de 200 g de masa que contiene 500 g de agua inicialmente a 17.3 oC. El calor específico del aluminio del bote es 0.900 kJ/kgK. La temperatura final del sistema es de 20.0 oC. ¿Cuál es el calor específico del plomo? Calor específico del agua: 4.18 kJ/kgK.

Problema de Calor y Primer Principio de la Termodinámica.

Sabiendo que una onda luminosa se desplaza con una velocidad v1 en el medio 1 y v2 en el medio 2 determinar: a) la relación de frecuencias de la onda en los medios 1 y 2; b) la relación de las direcciones de propagación en los dos medios; c) el ángulo límite en la superficie de separación de ambos medios.

Cuestion de Reflexión y Refracción de Ondas.

Un tanque contiene 2.73 m3 de aire a una presión P1=24.6 atm. El aire se enfría hasta que su presión sea P2=14 atm. Se conoce γ=1.41. ¿Cuál será la disminución de su energía interna? Tómese 1 atm=101324.72 N/m2.

Problema de Teoría Cinética de los Gases.

Tres kilogramos de agua a 18 oC se mezclan con nueve a 72 oC. Una vez establecido el equilibrio, se restituyen las dos cantidades de agua a su estado inicial, colocando 3 kg en contacto con una fuente térmica siempre a 18 oC y los 9 kg restantes en otra siempre a 72 oC. Calcular: a) el incremento de la entropía del agua como consecuencia del primer proceso y el incremento de entropía del Universo; b) el incremento de entropía del agua producido por todas las operaciones, y el del Universo; c) el incremento de entropía del agua debido al segundo proceso y el del Universo. Calor específico del agua: 1 cal/goC.

Problema de Entropia y Segundo Principio de la Termodinámica.

En un ciclo de Diesel el aire se comprime adiabáticamente desde un estado a hasta otro b, se calienta después a presión constante hasta c, se expande adiabáticamente hasta d y por último se enfría a volumen constante hasta a. Considera un ciclo Diesel que se inicia con 0.8 l de aire (γ=1.4) a 300 K y 105 N/m2. Si la temperatura en el punto c es Tc=1100 K y en el paso de a a b el volumen se reduce 20 veces: a) dibuja el ciclo Diesel; b) determina presión, volumen y temperatura en todos los puntos del ciclo; c) calcula la variación de energía interna, de calor y de trabajo en cada rama del ciclo.

Problema de Entropia y Segundo Principio de la Termodinámica. Aparece en la convocatoria de JUN1999.

Paginación de entradas

Anteriores 1 … 6 7 8 … 31 Siguientes
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo