Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Física II

Explíquese por qué se produce la dispersión de la luz blanca en un prisma y en una red de difracción. Analogías y diferencias. (Nota: n=n(λ)=índice de refracción).

Cuestion de Difracción.

¿A qué distancia debe colocarse un objeto respecto a una lente divergente para que la imagen: a) esté en el infinito? b) esté tan cerca del objeto como sea posible? c) sea positiva (derecha)? d) sea del mismo tamaño que el objeto? e) esté invertida y aumentada?

Cuestion de Óptica geométrica.

Dos moles de un gas ideal monoatómico inicialmente a 1 atm y 300 K realizan el siguiente ciclo, cuyas etapas son todas reversibles: 1) Compresión isotérmica hasta 2 atm, 2) Aumento isobárico de la T hasta 400K y 3) Retorno al estado inicial por el camino P=a+bT, siendo a y b constantes.
a) Dibuja esquemáticamente el ciclo sobre un diagrama P-T.
b) Calcula P, V y T de cada uno de los estados.
c) Calcula las variaciones numéricas ΔU y ΔS para cada etapa del ciclo.
d) En algún punto del último proceso la presión vale 1.5 atm ¿Cuánto vale entonces la temperatura?
(Cv para un gas ideal monoatómico = 3/2 R).

Problema de Entropia y Segundo Principio de la Termodinámica. Aparece en la convocatoria de JUN2009.

Un espejo cóncavo para afeitarse tiene una distancia focal de 15 cm. Hallar la distancia óptima de una persona al espejo si la distancia de visión nítida es 25 cm. ¿Cuál es el aumento?

Cuestion de Óptica geométrica.

a) Una olla gruesa de cobre (ccobre=0.093 cal/goC) de 2 kg (incluida su tapa) está a 150oC. Se vierte en ella 0.1 kg de agua (cagua=1 cal/goC, cvapor de agua=0.5 cal/goC) a 25oC y se tapa rápidamente la olla para que no se pueda escapar el vapor (suponer que la presión se mantiene constante e igual a la atmosférica). Calcula la temperatura final de la olla y de su contenido, y determina la fase (líquido o gas) del agua. Supón que no se pierde calor al entorno. Calor latente de vaporización del agua: Lv=538 cal/g. b) A continuación se toman 3 l de vapor de agua a 400 K y 1 atm (cp=8.8 cal/molK, γ=1.294, supóngase que el vapor de agua se comporta como un gas ideal) y se comprimen adiabáticamente de forma reversible hasta que su presión es P2=25 atm. Si la compresión se realiza en dos etapas adiabáticas, también reversiblemente, llevando en la primera etapa adiabáticamente el gas hasta la presión de 5 atm, dejándolo enfriar después a presión constante hasta que su temperatura vuelva a ser la inicial, y en una segunda etapa comprimiéndolo hasta que su presión sea 25 atm, determinar el trabajo necesario para realizar la transformación; c) comparar dicho trabajo con el realizado en una sola transformación adiabática desde 1 atm hasta 25 atm.
R=2 cal/molK=0.082 atml/Kmol=8.31 J/molK; 1 atm=101324.72 N/m2

Problema de Entropia y Segundo Principio de la Termodinámica. Aparece en la convocatoria de SEP2000.

Un sistema óptico está formado por dos lentes, la primera convergente de 60 cm de focal y la segunda divergente, separadas por 20 cm. a) Determinar la potencia de la segunda lente si estando el objeto a 15 cm de la lente convergente la imagen final dada por el sistema es 3.75 veces menor que el objeto; b) ¿cuál es el carácter de la imagen? c) la lente divergente está formada a su vez por dos lentes yuxtapuestas, una biconvexa de índice de refracción 1.2 y radios iguales y otra cóncavo-convexa de índice de refracción 1.8 y cuyos radios están en relación 1 a 3. Determinar los radios de curvatura de las lentes que componen la divergente; d) si en lugar de la lente divergente colocamos un espejo esférico en su misma posición, ¿qué radio debe tener dicho espejo para que el carácter y tamaño de la imagen siga siendo igual que antes? ¿Se trata de un espejo cóncavo o convexo?

Problema de Óptica geométrica. Aparece en la convocatoria de JUN2002.

Cuando dos ondas interfieren constructiva o destructivamente, ¿Hay generación o perdida de energía? Explicar lo que ocurre.

Cuestion de Interferencias.

Un rayo de luz incide sobre una lámina de vidrio sumergida en el agua, de manera que una parte del mismo se refleja y otra se refracta. Sabiendo que el ángulo de incidencia es de 30o y que el rayo reflejado y el refractado forman entre sí un ángulo de 125o, calcular el índice de refracción del vidrio. Indice de refracción del agua: na=1.33.

Problema de Reflexión y Refracción de Ondas.

Dos focos sonoros puntuales F1 y F2 sincrónicos de potencias emisivas 4π·10-2 W y 16π·10-2 W respectivamente, emiten simultáneamente un sonido cuya frecuencia es 103 s-1, regularmente en todas las direcciones. Sea un punto A situado a 10 m de F1 y a 20 m de F2; determinar, suponiendo la experiencia en aire a 121oC y despreciando la absorción y la atenuación: a) la intensidad física producida en A independientemente por cada uno de los focos sonoros F1 y F2; b) la intensidad física del sonido en A, provocada por la interferencia de ambos focos sonoros. c) ¿Cuál será la cantidad mínima que habría que modificar la distancia de F1 al punto A manteniendo constante la de F2 al punto A, para percibir en dicho punto un mínimo de intensidad? ¿Y para percibir un máximo? d) La sonoridad percibida en A, expresada en dB, en los casos a) y b).
Velocidad del sonido en el aire a 0oC vo=333 m/s; Io= 10-12 W/m2.

Problema de Interferencias.

Supóngase montado el experimento de Young para obtener franjas de interferencia. Sea la distancia entre las rendijas practicadas en la pantalla a=0.5 mm, la luz empleada es monocromática de longitud de onda 600 nm. Delante de la rendija superior se coloca una lámina de vidrio de caras paralelas y espesor e=10-2 mm. El índice de refracción del vidrio es 1.5. Calcular el valor del desplazamiento de las franjas en una pantalla situada a una distancia D=1 m de las rendijas.

Problema de Interferencias.

Paginación de entradas

Anteriores 1 … 7 8 9 … 31 Siguientes
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo