Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Física II

Un décimo de mol de un gas perfecto se encuentra en la parte inferior del recipiente de la figura. El pistón tiene una superficie de 50 cm2, pesa 100 kg y se encuentra situado a una altura h, siendo la temperatura inicial de 273 K. Se calienta el gas y el pistón sube 10 cm. Calcular la altura h, la temperatura final, la variación de energía interna y el calor suministrado.
Tómese cv=5 cal/molK; 1 atm=1 kg/cm2; constante de los gases perfectos: R=2 cal/molK

Problema de Teoría Cinética de los Gases.

Un gas perfecto que se encuentra a 27 oC ocupa un volumen de 4.1 l, estando sometido a una presión de 12 atm. A partir de este estado sufre las siguientes transformaciones reversibles: 1) se calienta a volumen constante hasta que la presión se duplica; 2) a continuación se expande isotérmicamente hasta que recupera la presión inicial; 3) finalmente se comprime a presión constante hasta que recupera el estado inicial. Se pide: a) dibujar el proceso en un diagrama P-V; b) calcular los calores y trabajos intercambiados por el gas en cada uno de los procesos, así como la variación de energía interna para cada uno de ellos; c) lo mismo que en b) para todo el ciclo.
Datos: cv=5 cal/mol; R=0.082 atm·l/molK=8.32 J/molK=2 cal/molK; 1 atm=101324.72 N/m2.

Problema de Entropia y Segundo Principio de la Termodinámica.

Explicar el fenómeno de la reflexión total, y las condiciones que deben concurrir para que se dé este fenómeno.

Cuestion de Reflexión y Refracción de Ondas.

¿Cuál será la onda resultante de la interferencia de dos ondas idénticas desfasadas en 6π? ¿Y en 3π? Justifíque la respuesta.
a) Onda de igual frecuencia pero de doble amplitud.
b) Onda de igual amplitud pero de doble frecuencia.
c) Onda de amplitud cero.
d) Onda de frecuencia cero.
e) No se puede saber sin conocer la longitud de onda de las ondas.

Cuestion de Interferencias.

Enuncie la segunda ley de la termología en sus versiones para máquinas térmicas y frigoríficas. Demuestre que los dos enunciados para máquinas son, en realidad, equivalentes.

Cuestion de Entropia y Segundo Principio de la Termodinámica.

Suponga que se desea efectuar el experimento de la doble rendija de Young con las ondas de radio de una estación cuya frecuencia es de 106 Hz. ¿Cuál deberá ser la separación entre las rendijas para que el primer máximo ocurra a un ángulo de 37o respecto del haz no desviado cuando se observa a una gran distancia de las rendijas?

Cuestion de Interferencias.

Se dispone de un sistema óptico formado por los siguientes elementos: una lente convergente de 12 cm de focal, una primera lente divergente de 24 cm de focal, una segunda lente divergente de 12 cm de focal y un espejo esférico situados en este orden. La lente convergente dista de la primera divergente 36 cm, la distancia entre las dos lentes divergentes es de 44 cm y la distancia entre la segunda lente divergente y el vértice del espejo es de 20 cm. Se coloca un objeto 6 cm a la izquierda de la primera lente.
Determinar el radio del espejo y decir si dicho espejo es cóncavo o convexo si se desea que la imagen final sea virtual y 3.375 veces menor que el objeto.

Problema de Óptica geométrica. Aparece en la convocatoria de JUN2000.

Un mol de un gas ideal biatómico a una presión inicial de 4 atm y una temperatura de 27oC realiza el siguiente ciclo reversible: 1) se expande isotérmicamente hasta que su volumen se duplica; 2) se comprime a presión constante hasta su volumen inicial; 3) se comprime isotérmicamente hasta una presión de 4 atm; 4) se expande a presión constante hasta su volumen inicial. a) Representar una gráfica exacta del proceso en un diagrama PV; b) calcular el trabajo realizado por el gas por ciclo; c) calcular el rendimiento del ciclo; d) comparar dicho rendimiento con el de un ciclo de Carnot que actuara entre las temperaturas de las isotermas anteriores.
Constante de los gases perfectos R=0.082 atm·l/mol·K=2 cal/mol·K; coeficiente adiabático de un gas biatómico γ=1.4.

Problema de Teoría Cinética de los Gases. Aparece en la convocatoria de SEP2001.

Demostrar la relación cp=cv+R para un gas ideal monoatómico. Cómo se modifica esta expresión para un gas ideal diatómico?

Cuestion de Teoría Cinética de los Gases.

Cuando se mira normalmente a una superficie que separa dos medios de índice de refracción n1 y n2 los objetos se ven a una distancia aparente S2 de la superficie que es distinta de la distancia real S1 a la que se encuentran. Determinar la relación que existe entre los índices de refracción de los medios y estas distancias.

Problema de Reflexión y Refracción de Ondas.

Paginación de entradas

Anteriores 1 … 7 8 9 … 31 Siguientes
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.