Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Problemas

Un tubo emite dos armónicos sucesivos de frecuencias 450 y 550 Hz (velocidad del sonido en las condiciones de la experiencia v=344 m/s). a) ¿El tubo está cerrado por un extremo o abierto por ambos? b) ¿Cuál es la longitud del tubo? c) Supongamos que hacemos sonar ese tubo con el sonido fundamental (tómese 50 Hz si no se han resuelto los apartados anteriores). Un observador móvil percibe una frecuencia de 54 Hz. ¿Se está acercando o alejando del tubo? ¿A qué velocidad? d) Este sonido se percibe a 2 m con una intensidad de 60 dB. ¿A qué distancia el nivel de intensidad es de 30 dB? e) Si nos encontramos a 2 m del tubo, ¿cuántos tubos deberían sonar a la vez para producir en total una sensación sonora de 80 dB?

Problema de Movimiento Ondulatorio. Aparece en la convocatoria de JUL2012.

Un tubo en forma de T tiene una de sus ramas cerrada por medio de un pistón móvil como se muestra en la figura (a).Se coloca un diapasón en uno de sus extremos a) ¿Cuál es la separación Δx entre posiciones sucesivas del pistón para las cuales se percibe intensidad máxima en el otro extremo abierto, B? La frecuencia con que emite el diapasón es de 256 Hz, la temperatura del aire del tubo en las condiciones de la experiencia es de 25.5 oC y la velocidad del sonido en aire en calma a 0 oC es de 333 m/s. b) ¿Para qué distancia x del pistón a la parte horizontal del tubo se produce el tercer máximo de intensidad?c) A continuación se coloca el pistón en la parte superior del tramo vertical del tubo tal como aparece en la figura (b). Determinar la frecuencia de las pulsaciones producidas entre este tubo y otro cuya longitud fuera un 5% mayor si en ambos casos se trata del sonido fundamental.

Problema de Interferencias. Aparece en la convocatoria de SEP2002.

Un tubo largo está formado por la unión de dos tubos concéntricos de radios casi iguales de modo que la longitud del tubo puede variarse a voluntad. Este tubo contiene aire (masa molecular 28.84 g/mol) a 77oC. Un diapasón vibra en las proximidades de uno de sus extremos con una frecuencia de 500 ciclos/segundo. Se produce resonancia (el tubo se encuentra recorrido por ondas estacionarias) cuando la longitud del tubo se ajusta a 56.25, 93.75 y 131.25 cm, pero no para longitudes intermedias. a) Deducir con estos datos si el tubo es abierto por los dos lados, o abierto por un solo extremo; b) calcular la velocidad del sonido en aire a 77oC; c) calcular, a partir del resultado anterior, la razón ϒ de los calores específicos para el aire. d) la longitud de este tubo y de otro abierto por ambos extremos se escogen de modo que sus frecuencias fundamentales son iguales. ¿Qué otras frecuencias tienen en común ambos tubos? e) Sabiendo que la potencia sonora emitida por el tubo inicial es de 4π·10-3 W; determinar la intensidad y la sonoridad percibidas por un observador situado a 2 m del tubo sonoro. ¿A qué distancia tendrá que situarse el observador para dejar de percibir el sonido? Intensidad umbral para la frecuencia de dicho tubo: Io=4·10-12 W/m2.

Problema de Interferencias.

Un tubo sonoro cerrado por un extremo presenta, al emitir un sonido, tres nodos en su longitud de forma que la distancia entre dos nodos consecutivos es de 40 cm. Determinar: 1º) La longitud del tubo; 2º) La frecuencia emitida; 3º) Las longitudes de un tubo cerrado por un extremo y de otro abierto por ambos extremos que emitieran ese mismo sonido como fundamental. Velocidad del sonido en el aire de los tubos v=348 m/s.

Problema de Interferencias.

Un vagón abierto de 24000 kg viaja sin fricción sobre una vía plana con una velocidad de 3 m/s. Empieza a llover con intensidad cayendo la lluvia verticalmente sobre el vagón. ¿Qué velocidad tendrá el vagón cuando haya acumulado 4000 kg de carga de lluvia?

Cuestion de Dinámica de la Partícula.

Un vehículo circula por una carretera a una velocidad constante de 108 km/h tocando el claxon. Un hombre situado en un camino perpendicular a la carretera y a 100 m del cruce percibe el sonido del claxon con una cierta sonoridad en el instante en que el vehículo pasa por el cruce y deja de percibirlo 20 s después. Sabiendo que la frecuencia de emisión del sonido del claxon es 2 veces superior a la frecuencia de vibración fundamental de una cuerda de piano de 50 cm de longitud y 5 g de masa cuando está sometida a una fuerza tensora de 400 N. Determinar:
a)La frecuencia de emisión
b)la frecuencia que percibe a los 10 segundos de pasar por el cruce
c) la sensación sonora cuando estaba en el cruce.
Tómese la velocidad del sonido v=340 m/s

Problema de Movimiento Ondulatorio.

Un vehículo espacial de 350 kg de masa se desplaza con una velocidad de 29.000 km/h en la dirección x fuera de la atracción de cualquier cuerpo celeste. El vehículo tiene su rotación estabilizada y gira en torno al eje z con velocidad angular constante de dθ/dt=π/10 rad/s. Durante un cuarto de giro, desde θ=0 a θ=π/2, se activa un propulsor que proporciona un empuje de valor constante de 225 N. Determinar la componente «y» de la velocidad del vehículo cuando θ=π/2. Despreciar el pequeño cambio de masa correspondiente a la salida de gases por la tobera.

Problema de Dinámica de la Partícula.

Un vehículo espacial que describe una órbita circular a una velocidad de 24·103 km/h suelta una cápsula cuya masa total es de 500 kg incluyendo 375 kg de combustible. Si se consume a razón de 15 kg/s y se expulsa con una velocidad relativa de 2500 m/s, hallar la aceleración tangencial de la cápsula: a) en el momento de encender el motor; b) cuando se consume la última partícula de combustible.

Problema de Dinámica de los Sistemas de Partículas.

Un vehículo espacial que se aleja de la Tierra va provisto de un oscilador de radio de frecuencia fija νo =834.652 s -1. Un receptor situado en la Tierra compara la señal recibida con la de otro generador idéntico al situado en el vehículo espacial y encuentra una diferencia de frecuencia Δν=130 s -1 . Determinar la velocidad de alejamiento del vehículo espacial con respecto al punto de observación. Velocidad de las ondas electromagnéticas: c=3.10 5 km/s.

Problema de Movimiento Ondulatorio.

Un vehículo espacial que se mueve en una órbita circular de radio r1 cambia a otra órbita circular de radio mayor r2 mediante un tramo elíptico desde A hasta B (ésta trayectoria de cambio se conoce como elipse de cambio de Hohmann). El salto se realiza mediante un incremento brusco de celeridad ΔvA en A y un segundo incremento ΔvB en B. Escríbanse las expresiones de ΔvA y ΔvB en función de los radios indicados y del valor g de la gravedad en la superficie terrestre. Si ambos Δv son positivos, ¿cómo puede suceder que la celeridad en la órbita 2 sea menor que en la 1? Calcular el valor numérico de cada incremento de velocidad si r1=6700 km y r2=7020 km.

Problema de Gravitación.

Paginación de entradas

Anteriores 1 … 103 104 105 … 120 Siguientes
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo