Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
  • Inicio
  • Asignaturas
    • Física I
      • Problemas – Física I
    • Fisica II
      • Problemas – Física II

Física II

La lente convergente gruesa de la figura tiene un índice de refracción de 1.5 y sus radios de curvatura son r1=20 mm y r2=30 mm, siendo su espesor 30 mm. Hallar las posiciones F, F´, H y H´. Situar el punto imagen de un punto objeto S que está situado 80 mm a la izquierda del primer vértice y 10 mm por encima del eje.

Problema de Óptica geométrica.

Un sistema óptico consta de dos lentes con distancias focales iguales en magnitud absoluta. Una de las lentes es convergente y la otra divergente. Las lentes están instaladas en el mismo eje, a cierta distancia la una de la otra. Se sabe que al cambiar las lentes, la imagen real de la Luna, proyectada por el sistema se desplaza en l=20 cm. Encontrar la distancia focal de cada una de las lentes.

Problema de Óptica geométrica.

Se dispone de un sistema óptico centrado formado por una lente convergente de 5 dioptrías y un espejo esférico, separados una distancia de 40 cm, si se sabe que la imagen dada por el sistema de un objeto situado a 30 cm a la izquierda de la lente es virtual y se encuentra situada a 20 cm del espejo; determinar: a) el radio de curvatura del mismo. Podríamos conseguir que la imagen fuera real y estuviera situada a 20 cm del espejo por los dos procedimientos siguientes: situando el espejo a una distancia de la lente distinta de la del apartado anterior o bien, mantener la distancia, intercalando otra lente convergente, de 2 dioptrias, entre ambos. Determinar. b) la distancia a la que han de estar es espejo y la lente. c) la distancia a la que hay que colocar la segunda lente convergente de la primera. d) ¿qué diferencias hay entre las imágenes obtenidas en los tres casos?

Problema de Óptica geométrica. Aparece en la convocatoria de SEP1998.

Un sistema está compuesto por 3 kg de agua a 80 oC. Sobre él se realiza un trabajo de 25 kJ agitándolo con una rueda de paletas, al mismo tiempo que se le extraen 15 kcal de calor. a) ¿Cuál es la variación de la energía interna del sistema? b) ¿Cuál es su temperatura final?

Problema de Calor y Primer Principio de la Termodinámica.

Un reloj de péndulo metálico adelanta 5 s por día a una temperatura de 15oC y atrasa 10 s por día a una temperatura de 30oC. Encontrar el coeficiente de dilatación del metal del péndulo suponiendo que el péndulo se comporta como un péndulo simple.

Cuestion de Calor y Primer Principio de la Termodinámica.

Un recipiente cuyo volumen es de 10 l contiene 16 g de oxígeno siendo su temperatura de 13 oC y está en comunicación por medio de una llave, inicialmente cerrada, con otro recipiente de volumen 8 l conteniendo oxígeno a la presión de 700 mm de Hg y temperatura de 13 oC. Se abre la llave que pone en comunicación ambos recipientes. Determinar: a) peso de oxígeno en el segundo recipiente; b) indicar de qué a cuál recipiente pasa oxígeno; c) presión final del gas, una vez que se ha alcanzado el equilibrio. Peso molecular del oxígeno: 32 g/mol.

Problema de Teoría Cinética de los Gases.

Calcular el aumento de la entropía específica del agua cuando se la calienta a la presión atmosférica constante desde -18 oC donde se encuentra en forma de hielo, hasta 150 oC, donde se encuentra en forma de vapor sobrecalentado. Datos: calor específico del hielo: 0.5 cal/goC; calor específico del agua: 1.0 cal/goC; calor específico del vapor: 0.47 cal/goC; calor de fusión del hielo: 80 cal/g; calor de vaporización del agua: 540 cal/g.

Problema de Entropia y Segundo Principio de la Termodinámica.

Explíquese por qué se produce la dispersión de la luz blanca en un prisma y en una red de difracción. Analogías y diferencias. (Nota: n=n(λ)=índice de refracción).

Cuestion de Difracción.

¿A qué distancia debe colocarse un objeto respecto a una lente divergente para que la imagen: a) esté en el infinito? b) esté tan cerca del objeto como sea posible? c) sea positiva (derecha)? d) sea del mismo tamaño que el objeto? e) esté invertida y aumentada?

Cuestion de Óptica geométrica.

Dos moles de un gas ideal monoatómico inicialmente a 1 atm y 300 K realizan el siguiente ciclo, cuyas etapas son todas reversibles: 1) Compresión isotérmica hasta 2 atm, 2) Aumento isobárico de la T hasta 400K y 3) Retorno al estado inicial por el camino P=a+bT, siendo a y b constantes.
a) Dibuja esquemáticamente el ciclo sobre un diagrama P-T.
b) Calcula P, V y T de cada uno de los estados.
c) Calcula las variaciones numéricas ΔU y ΔS para cada etapa del ciclo.
d) En algún punto del último proceso la presión vale 1.5 atm ¿Cuánto vale entonces la temperatura?
(Cv para un gas ideal monoatómico = 3/2 R).

Problema de Entropia y Segundo Principio de la Termodinámica. Aparece en la convocatoria de JUN2009.

Paginación de entradas

Anteriores 1 … 22 23 24 … 31 Siguientes
Borrar todo
Asignatura
  • Física I
    • Cinemática de la Partícula
    • Dinámica de la Partícula
    • Dinámica de los Sistemas de Partículas
    • Dinámica del Sólido Rígido
    • Gravitación
    • Introducción (Magnitudes y Vectores)
    • Movimiento Ondulatorio
    • Movimiento Oscilatorio
    • Propiedades Elásticas de los Sólidos
    • Trabajo y Energía
  • Física II
    • Calor y Primer Principio de la Termodinámica
    • Difracción
    • Electrostática
    • Entropia y Segundo Principio de la Termodinámica
    • Interferencias
    • Óptica geométrica
    • Reflexión y Refracción de Ondas
    • Teoría Cinética de los Gases
Tipo
  • Cuestion
  • Problema
Convocatorias
  • Inicio
  • Asignaturas
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.AceptarNo